scholarly journals Are the silicate crystallinities of oxygen-rich evolved stars related to their mass loss rates?

2018 ◽  
Vol 14 (S343) ◽  
pp. 425-426
Author(s):  
Biwei Jiang ◽  
Jiaming Liu ◽  
Aigen Li

AbstractA sample of 28 oxygen-rich evolved stars is selected based on the presence of crystalline silicate emission features in their ISO/SWS spectra. The crystallinity, measured as the flux fraction of crystalline silicate features, is found not to be related to mass loss rate that is derived from fitting the spectral energy distribution.

2002 ◽  
Vol 570 (1) ◽  
pp. 344-368 ◽  
Author(s):  
J. P. Aufdenberg ◽  
P. H. Hauschildt ◽  
E. Baron ◽  
T. E. Nordgren ◽  
A. W. Burnley ◽  
...  

2019 ◽  
Vol 622 ◽  
pp. A123 ◽  
Author(s):  
J. M. da Silva Santos ◽  
J. Ramos-Medina ◽  
C. Sánchez Contreras ◽  
P. García-Lario

Context. This is the second paper of a series making use of Herschel/PACS spectroscopy of evolved stars in the THROES catalogue to study the inner warm regions of their circumstellar envelopes (CSEs). Aims. We analyse the CO emission spectra, including a large number of high-J CO lines (from J = 14–13 to J = 45–44, ν = 0), as a proxy for the warm molecular gas in the CSEs of a sample of bright carbon-rich stars spanning different evolutionary stages from the asymptotic giant branch to the young planetary nebulae phase. Methods. We used the rotational diagram (RD) technique to derive rotational temperatures (Trot) and masses (MH2) of the envelope layers where the CO transitions observed with PACS arise. Additionally, we obtained a first order estimate of the mass-loss rates and assessed the impact of the opacity correction for a range of envelope characteristic radii. We used multi-epoch spectra for the well-studied C-rich envelope IRC+10216 to investigate the impact of CO flux variability on the values of Trot and MH2. Results. The sensitivity of PACS allowed for the study of higher rotational numbers than before indicating the presence of a significant amount of warmer gas (∼200 − 900 K) that is not traceable with lower J CO observations at submillimetre/millimetre wavelengths. The masses are in the range MH2 ∼ 10−2 − 10−5 M⊙, anticorrelated with temperature. For some strong CO emitters we infer a double temperature (warm T¯rot ∼ 400 K and hot T¯rot ∼ 820 K) component. From the analysis of IRC+10216, we corroborate that the effect of line variability is perceptible on the Trot of the hot component only, and certainly insignificant on MH2 and, hence, the mass-loss rate. The agreement between our mass-loss rates and the literature across the sample is good. Therefore, the parameters derived from the RD are robust even when strong line flux variability occurs, and the major source of uncertainty in the estimate of the mass-loss rate is the size of the CO-emitting volume.


2010 ◽  
Vol 6 (S272) ◽  
pp. 348-353 ◽  
Author(s):  
David H. Cohen ◽  
Emma E. Wollman ◽  
Maurice A. Leutenegger

AbstractX-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).


2018 ◽  
Vol 14 (S343) ◽  
pp. 464-465
Author(s):  
Iain McDonald

AbstractThe factors controlling strong mass loss from evolved stars remain elusive, frustrating efforts to parameterise mass loss in models of evolved stars. We herein describe evidence we have collected to show that the mass-loss rate of stars is controlled by stellar pulsations, and that we are close to providing improved prescriptions for mass-loss rates from many kinds of evolved stars.


1999 ◽  
Vol 191 ◽  
pp. 379-388
Author(s):  
M. Steffen ◽  
D. Schönberner ◽  
R. Szczerba

Up to now, hydrodynamical models of dust-driven AGB winds do not generally take into account the ‘long-term’ changes of the stellar parameters (on stellar evolution time scales of 103 to 105 yrs), although it is well known that the luminosity and (very likely) the mass loss rate undergo significant variations when so called ‘thermal pulses’ occur on the upper AGB. In this review we demonstrate that time-dependent radiation hydrodynamics calculations are needed to understand the formation, structure, and spectral energy distribution of detached dust shells detected by IRAS and ISO. Combined with appropriate models, these observations can reveal part of the previous mass loss history on the AGB and allow an empirical check of presently adopted mass loss laws.Based on insights from hydrodynamical simulations, we discuss the two competing scenarios that have been put forward to explain the origin of the very thin molecular shells recently discovered around some carbon stars. We find that the signature of a short mass loss ‘eruption’ broadens quickly with time due to the related velocity gradient across the shell. Hence, this scenario is not considered a likely explanation of detached CO shells. On the other hand, the alternative mechanism, interaction of winds, is shown to be capable of producing very thin shells of greatly enhanced gas density in the dusty outflows from AGB stars by sweeping up matter at the interface between both type of winds.


1999 ◽  
Vol 192 ◽  
pp. 95-99
Author(s):  
J.A.D.L. Blommaert ◽  
M.A.T. Groenewegen ◽  
M. R. Cioni ◽  
H. J. Habing ◽  
J.Th. van Loon ◽  
...  

We used ISOCAM and ISOPHOT to observe the spectral energy distribution between 3.6 and 60 μm of AGB stars in the Small Magellanic Cloud detected by IRAS. CAM-CVF spectra are made which enable us to establish the carbon- or oxygen-rich nature of the stars.We are in the process of analysing this data using a radiative transfer model. This will provide us with accurate determinations of luminosity and mass loss rate. Combining the results on the SMC, LMC and Galaxy we hope to address the open question of the metallicity dependencies of the mass loss rate. This in turn is important in the ejection of matter by AGB stars into the interstellar medium.


2020 ◽  
Vol 492 (4) ◽  
pp. 5994-6006 ◽  
Author(s):  
Emma R Beasor ◽  
Ben Davies ◽  
Nathan Smith ◽  
Jacco Th van Loon ◽  
Robert D Gehrz ◽  
...  

ABSTRACT Evolutionary models have shown the substantial effect that strong mass-loss rates ($\dot{M}$s) can have on the fate of massive stars. Red supergiant (RSG) mass-loss is poorly understood theoretically, and so stellar models rely on purely empirical $\dot{M}$–luminosity relations to calculate evolution. Empirical prescriptions usually scale with luminosity and effective temperature, but $\dot{M}$ should also depend on the current mass and hence the surface gravity of the star, yielding more than one possible $\dot{M}$ for the same position on the Hertzsprung–Russell diagram. One can solve this degeneracy by measuring $\dot{M}$ for RSGs that reside in clusters, where age and initial mass (Minit) are known. In this paper we derive $\dot{M}$ values and luminosities for RSGs in two clusters, NGC 2004 and RSGC1. Using newly derived Minit measurements, we combine the results with those of clusters with a range of ages and derive an Minit-dependent $\dot{M}$ prescription. When comparing this new prescription to the treatment of mass-loss currently implemented in evolutionary models, we find models drastically overpredict the total mass-loss, by up to a factor of 20. Importantly, the most massive RSGs experience the largest downward revision in their mass-loss rates, drastically changing the impact of wind mass-loss on their evolution. Our results suggest that for most initial masses of RSG progenitors, quiescent mass-loss during the RSG phase is not effective at removing a significant fraction of the H-envelope prior to core-collapse, and we discuss the implications of this for stellar evolution and observations of SNe and SN progenitors.


2018 ◽  
Vol 14 (S343) ◽  
pp. 458-459
Author(s):  
Walter J. Macie ◽  
Roberto D. D. Costa

AbstractA sample of AGB/RGB stars with an excess of Li abundances is considered in order to estimate their mass loss rates. Our method is based on a correlation between the Li abundances and the stellar luminosity, using a modified version of the Reimers formula. We have adopted a calibration based on an empirical correlation between the mass loss rate and stellar parameters. We conclude that most Li-rich stars have lower mass loss rates compared with the majority of AGB/RGB stars, which show no evidences of Li enhancements, so that the Li enrichment process is probably not associated with an increased mass loss rate.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 454-454 ◽  
Author(s):  
Cyril Georgy ◽  
Sylvia Ekström

AbstractThe red supergiant phase is an important phase of the evolution of massive star, as it mostly determines its final stages. One of the most important driver of the evolution during this phase is mass loss. However, the mass-loss rates prescription used for red supergiants in current stellar evolution models are still very inaccurate.Varying the mass-loss rate makes the star evolve for some time in yellow/blue regions of the HRD, modifying the number of RSGs in some luminosity ranges. Figure 1 shows how the luminosity distribution of RSGs is modified for various mass-loss prescriptions. This illustrates that it is theoretically possible to determine at least roughly what is the typical mass loss regime of RSGs in a stellar evolution perspective.


2020 ◽  
Vol 635 ◽  
pp. A173 ◽  
Author(s):  
J. Krtička ◽  
J. Kubát ◽  
I. Krtičková

Context. Fast line-driven stellar winds play an important role in the evolution of planetary nebulae, even though they are relatively weak. Aims. We provide global (unified) hot star wind models of central stars of planetary nebulae. The models predict wind structure including the mass-loss rates, terminal velocities, and emergent fluxes from basic stellar parameters. Methods. We applied our wind code for parameters corresponding to evolutionary stages between the asymptotic giant branch and white dwarf phases for a star with a final mass of 0.569 M⊙. We study the influence of metallicity and wind inhomogeneities (clumping) on the wind properties. Results. Line-driven winds appear very early after the star leaves the asymptotic giant branch (at the latest for Teff ≈ 10 kK) and fade away at the white dwarf cooling track (below Teff = 105 kK). Their mass-loss rate mostly scales with the stellar luminosity and, consequently, the mass-loss rate only varies slightly during the transition from the red to the blue part of the Hertzsprung–Russell diagram. There are the following two exceptions to the monotonic behavior: a bistability jump at around 20 kK, where the mass-loss rate decreases by a factor of a few (during evolution) due to a change in iron ionization, and an additional maximum at about Teff = 40−50 kK. On the other hand, the terminal velocity increases from about a few hundreds of km s−1 to a few thousands of km s−1 during the transition as a result of stellar radius decrease. The wind terminal velocity also significantly increases at the bistability jump. Derived wind parameters reasonably agree with observations. The effect of clumping is stronger at the hot side of the bistability jump than at the cool side. Conclusions. Derived fits to wind parameters can be used in evolutionary models and in studies of planetary nebula formation. A predicted bistability jump in mass-loss rates can cause the appearance of an additional shell of planetary nebula.


Sign in / Sign up

Export Citation Format

Share Document