scholarly journals DYNAMO: An upclose view of turbulent, clumpy galaxies

2019 ◽  
Vol 15 (S352) ◽  
pp. 317-317
Author(s):  
Deanne Fisher

AbstractOver 2/3 of all star formation in the Universe occurs in gas-rich, super-high pressure clumpy galaxies in the epoch of redshift z ∼ 1 – 3. However, because these galaxies are so distant we are limited in the information available to study the properties of star formation and gas in these systems. I will present results using a sample of extremely rare, nearby galaxies (called DYNAMO) that are very well matched in gas fraction (fgas ∼ 20 – 80%), kinematics (rotating disks with velocity dispersions ranging 20 – 100 km/s), structure (exponential disks) and morphology (clumpy star formation) to high-z main-sequence galaxies. We therefore use DYNAMO galaxies as laboratories to study the processes inside galaxies in the dominate mode of star formation in the Universe. In this talk I will report on results from our programs with HST, ALMA, Keck, and NOEMA for DYNAMO galaxies that are aimed at testing models of star formation. We have discovered of an inverse relationship between gas velocity dispersion and molecular gas depletion time. This correlation is directly predicted by theories of feedback-regulated star formation; conversely, predictions of models in which turbulence is driven by gravity only are not consistent with our data. I will also show that feedback-regulated star formation can explain the redshift evolution of galaxy star formation efficiency. I will also present results from a recently acquired map of CO(2-1) in a clumpy galaxy with resolution less than 200 pc. With maps such as these we can begin to study these super giant star forming clumps at scales that are more comparable to local surveys. I will show results for the star formation efficiency of clumps, the boundedness of clumps of molecular gas, and discuss links between star formation efficiency and formation of clumps of stellar mass. The details of clumpy systems are a direct constraint of the results of simulations, especially on the nature of feedback in the high density environments of star formation that dominate the early Universe.

2020 ◽  
Vol 496 (4) ◽  
pp. 4606-4623 ◽  
Author(s):  
L Morselli ◽  
G Rodighiero ◽  
A Enia ◽  
E Corbelli ◽  
V Casasola ◽  
...  

ABSTRACT In this work, we analyse the connection between gas availability and the position of a region with respect to the spatially resolved main-sequence (MS) relation. Following the procedure presented in Enia et al. (2020), for a sample of five face-on, grand design spiral galaxies located on the MS we obtain estimates of stellar mass and star formation rate surface densities (Σ⋆ and ΣSFR) within cells of 500 pc size. Thanks to H i 21cm and 12CO(2–1) maps of comparable resolution, within the same cells we estimate the surface densities of the atomic (ΣH i) and molecular ($\Sigma _{\rm {H_2}}$) gas and explore the correlations among all these quantities. Σ⋆, ΣSFR, and $\Sigma _{\rm {H_2}}$ define a 3D relation whose projections are the spatially resolved MS, the Kennicutt–Schmidt law and the molecular gas MS. We find that $\Sigma _{\rm {H_2}}$ steadily increases along the MS relation and is almost constant perpendicular to it. ΣH i is nearly constant along the MS and increases in its upper envelope. As a result, ΣSFR can be expressed as a function of Σ⋆ and ΣH i, following the relation log ΣSFR = 0.97log Σ⋆ + 1.99log ΣH i − 11.11. We show that the total gas fraction significantly increases towards the starburst regions, accompanied by a weak increase in star formation efficiency. Finally, we find that H2/H i varies strongly with the distance from the MS, dropping dramatically in regions of intense star formation, where the UV radiation from newly formed stars dissociates the H2 molecule, illustrating the self-regulating nature of the star formation process.


2020 ◽  
Vol 493 (1) ◽  
pp. L39-L43 ◽  
Author(s):  
Sara L Ellison ◽  
Mallory D Thorp ◽  
Lihwai Lin ◽  
Hsi-An Pan ◽  
Asa F L Bluck ◽  
...  

ABSTRACT Using a sample of 11 478 spaxels in 34 galaxies with molecular gas, star formation, and stellar maps taken from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the parameters that correlate with variations in star formation rates on kpc scales. We use a combination of correlation statistics and an artificial neural network to quantify the parameters that drive both the absolute star formation rate surface density (ΣSFR), as well as its scatter around the resolved star-forming main sequence (ΔΣSFR). We find that ΣSFR is primarily regulated by molecular gas surface density ($\Sigma _{\rm H_2}$) with a secondary dependence on stellar mass surface density (Σ⋆), as expected from an ‘extended Kennicutt–Schmidt relation’. However, ΔΣSFR is driven primarily by changes in star formation efficiency (SFE), with variations in gas fraction playing a secondary role. Taken together, our results demonstrate that whilst the absolute rate of star formation is primarily set by the amount of molecular gas, the variation of star formation rate above and below the resolved star-forming main sequence (on kpc scales) is primarily due to changes in SFE.


Author(s):  
Sara L Ellison ◽  
Lihwai Lin ◽  
Mallory D Thorp ◽  
Hsi-An Pan ◽  
Jillian M Scudder ◽  
...  

Abstract Using a sample of ∼15,000 kpc-scale star-forming spaxels in 28 galaxies drawn from the ALMA-MaNGA QUEnching and STar formation (ALMaQUEST) survey, we investigate the galaxy-to-galaxy variation of the ‘resolved’ Schmidt-Kennicutt relation (rSK; $\Sigma _{\rm H_2}$ - ΣSFR), the ‘resolved’ star forming main sequence (rSFMS; Σ⋆ - ΣSFR) and the ‘resolved’ molecular gas main sequence (rMGMS; Σ⋆ - $\Sigma _{\rm H_2}$). The rSK relation, rSFMS and rMGMS all show significant galaxy-to-galaxy variation in both shape and normalization, indicating that none of these relations is universal between galaxies. The rSFMS shows the largest galaxy-to-galaxy variation and the rMGMS the least. By defining an ‘offset’ from the average relations, we compute a ΔrSK, ΔrSFMS, ΔrMGMS for each galaxy, to investigate correlations with global properties. We find the following correlations with at least 2σ significance: the rSK is lower (i.e. lower star formation efficiency) in galaxies with higher M⋆, larger Sersic index and lower specific SFR (sSFR); the rSFMS is lower (i.e. lower sSFR) in galaxies with higher M⋆ and larger Sersic index; the rMGMS is lower (i.e. lower gas fraction) in galaxies with lower sSFR. In the ensemble of all 15,000 data points, the rSK relation and rMGMS show equally tight scatters and strong correlation coefficients, compared with a larger scatter and weaker correlation in the rSFMS. Moreover, whilst there is no correlation between ΔrSK and ΔrMGMS in the sample, the offset of a galaxy’s rSFMS does correlate with both of the other two offsets. Our results therefore indicate that the rSK and rMGMS are independent relations, whereas the rSFMS is a result of their combination.


2020 ◽  
Vol 492 (3) ◽  
pp. 3073-3090 ◽  
Author(s):  
Eduardo A D Lacerda ◽  
Sebastián F Sánchez ◽  
R Cid Fernandes ◽  
Carlos López-Cobá ◽  
Carlos Espinosa-Ponce ◽  
...  

ABSTRACT We study the presence of optically-selected active galactic nuclei (AGNs) within a sample of 867 galaxies extracted from the extended Calar-Alto Legacy Integral Field spectroscopy Area (eCALIFA) spanning all morphological classes. We identify 10 Type-I and 24 Type-II AGNs, amounting to ∼4 per cent of our sample, similar to the fraction reported by previous explorations in the same redshift range. We compare the integrated properties of the ionized and molecular gas, and stellar population of AGN hosts and their non-active counterparts, combining them with morphological information. The AGN hosts are found in transitory parts (i.e. green-valley) in almost all analysed properties which present bimodal distributions (i.e. a region where reside star-forming galaxies and another with quiescent/retired ones). Regarding morphology, we find AGN hosts among the most massive galaxies, with enhanced central stellar-mass surface density in comparison to the average population at each morphological type. Moreover, their distribution peaks at the Sab-Sb classes and none are found among very late-type galaxies (>Scd). Finally, we inspect how the AGN could act in their hosts regarding the quenching of star-formation. The main role of the AGN in the quenching process appears to be the removal (or heating) of molecular gas, rather than an additional suppression of the already observed decrease of the star-formation efficiency from late-to-early type galaxies.


2015 ◽  
Vol 11 (S315) ◽  
pp. 26-29
Author(s):  
Julia Kamenetzky ◽  
Naseem Rangwala ◽  
Jason Glenn ◽  
Philip Maloney ◽  
Alex Conley

AbstractMolecular gas is the raw material for star formation and is commonly traced by the carbon monoxide (CO) molecule. The atmosphere blocks all but the lowest-J transitions of CO for observatories on the ground, but the launch of the Herschel Space Observatory revealed the CO emission of nearby galaxies from J = 4−3 to J = 13−12. Herschel showed that mid- and high-J CO lines in nearby galaxies are emitted from warm gas, accounting for approximately 10% of the molecular mass, but the majority of the CO luminosity. The energy budget of this warm, highly-excited gas is a significant window into the feedback interactions among molecular gas, star formation, and galaxy evolution. Likely, mechanical heating is required to explain the excitation. Such gas has also been observed in star forming regions within our galaxy.We have examined all ~300 spectra of galaxies from the Herschel Fourier Transform Spectrometer and measured line fluxes or upper limits for the CO J = 4−3 to J = 13−12, [CI], and [NII] 205 micron lines in ~200 galaxies, taking systematic effects of the FTS into account. We will present our line fitting method, illustrate trends available so far in this large sample, and preview the full 2-component radiative transfer likelihood modeling of the CO emission using an illustrative sample of 20 galaxies, including comparisons to well-resolved galactic regions. This work is a comprehensive study of mid- and high-J CO emission among a variety of galaxy types, and can be used as a resource for future (sub)millimeter studies of galaxies with ground-based instruments.


2020 ◽  
Vol 644 ◽  
pp. A97
Author(s):  
D. Colombo ◽  
S. F. Sanchez ◽  
A. D. Bolatto ◽  
V. Kalinova ◽  
A. Weiß ◽  
...  

Understanding how galaxies cease to form stars represents an outstanding challenge for galaxy evolution theories. This process of “star formation quenching” has been related to various causes, including active galactic nuclei activity, the influence of large-scale dynamics, and the environment in which galaxies live. In this paper, we present the first results from a follow-up of CALIFA survey galaxies with observations of molecular gas obtained with the APEX telescope. Together with the EDGE-CARMA observations, we collected 12CO observations that cover approximately one effective radius in 472 CALIFA galaxies. We observe that the deficit of galaxy star formation with respect to the star formation main sequence (SFMS) increases with the absence of molecular gas and with a reduced efficiency of conversion of molecular gas into stars, which is in line with the results of other integrated studies. However, by dividing the sample into galaxies dominated by star formation and galaxies quenched in their centres (as indicated by the average value of the Hα equivalent width), we find that this deficit increases sharply once a certain level of gas consumption is reached, indicating that different mechanisms drive separation from the SFMS in star-forming and quenched galaxies. Our results indicate that differences in the amount of molecular gas at a fixed stellar mass are the primary drivers for the dispersion in the SFMS, and the most likely explanation for the start of star formation quenching. However, once a galaxy is quenched, changes in star formation efficiency drive how much a retired galaxy differs in its star formation rate from star-forming ones of similar masses. In other words, once a paucity of molecular gas has significantly reduced star formation, changes in the star formation efficiency are what drives a galaxy deeper into the red cloud, hence retiring it.


2019 ◽  
Vol 486 (4) ◽  
pp. 4463-4472 ◽  
Author(s):  
Xiaoling Yu ◽  
Yong Shi ◽  
Yanmei Chen ◽  
David R Law ◽  
Dmitry Bizyaev ◽  
...  

Abstract We analyse the intrinsic velocity dispersion properties of 648 star-forming galaxies observed by the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, to explore the relation of intrinsic gas velocity dispersions with star formation rates (SFRs), SFR surface densities ($\rm {\Sigma _{SFR}}$), stellar masses, and stellar mass surface densities ($\rm {\Sigma _{*}}$). By combining with high z galaxies, we found that there is a good correlation between the velocity dispersion and the SFR as well as $\rm {\Sigma _{SFR}}$. But the correlation between the velocity dispersion and the stellar mass as well as $\rm {\Sigma _{*}}$ is moderate. By comparing our results with predictions of theoretical models, we found that the energy feedback from star formation processes alone and the gravitational instability alone cannot fully explain simultaneously the observed velocity–dispersion/SFR and velocity–dispersion/$\rm {\Sigma _{SFR}}$ relationships.


2014 ◽  
Vol 10 (S309) ◽  
pp. 129-132 ◽  
Author(s):  
David Fisher ◽  

AbstractWe highlight recent results on the DYNAMO survey of turbulent, clumpy disks galaxies found at z=0.1. Bright star forming DYNAMO galaxies are found to be very similar in properties to star forming galaxies in the high redshift Universe. Typical star formation rates of turbulent DYNAMO galaxies range 10-80 M⊙ yr−1. Roughly 2/3 of DYNAMO galaxies have Hα kinematics that are consistent with rotation. The typical gas velocity dispersion of DYNAMO galaxies is σHα ~ 20 - 60 km s−1. We show that, when convolved to the same resolution, maps of Hα emission in DYNAMO galaxies have essentially identical morphology as that of z ~ 1 - 3 galaxies. Finally, DYNAMO galaxies have high molecular gas fractions fmol ~ 20 - 35%. We note that DYNAMO galaxies are not dwarfs, typical masses are Mstar ~ 0.8 - 8 × 1010 M⊙. These data are all consistent with a scenario in which despite being at relatively low redshift the DYNAMO galaxies are forming stars similarly to that observed in the high-redshift Universe, that is to say star formation is occurring in very massive (Mclump ~ 109 M⊙), very large (rclump ~ 300 pc) clumps of gas.


2015 ◽  
Vol 150 (4) ◽  
pp. 115 ◽  
Author(s):  
Antonio Usero ◽  
Adam K. Leroy ◽  
Fabian Walter ◽  
Andreas Schruba ◽  
Santiago García-Burillo ◽  
...  

2020 ◽  
Vol 492 (4) ◽  
pp. 6027-6041 ◽  
Author(s):  
Sara L Ellison ◽  
Mallory D Thorp ◽  
Hsi-An Pan ◽  
Lihwai Lin ◽  
Jillian M Scudder ◽  
...  

ABSTRACT Starburst galaxies have elevated star formation rates (SFRs) for their stellar mass. In Ellison et al., we used integral field unit maps of SFR surface density (ΣSFR) and stellar mass surface density (Σ⋆) to show that starburst galaxies in the local universe are driven by SFRs that are preferentially boosted in their central regions. Here, we present molecular gas maps obtained with the Atacama Large Millimeter Array (ALMA) observatory for 12 central starburst galaxies at z ∼ 0 drawn from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. The ALMA and MaNGA data are well matched in spatial resolution, such that the ALMA maps of molecular gas surface density ($\Sigma _{\rm H_2}$) can be directly compared with MaNGA maps at kpc-scale resolution. The combination of $\Sigma _{\rm H_2}$, Σ⋆ and ΣSFR at the same resolution allow us to investigate whether central starbursts are driven primarily by enhancements in star formation efficiency (SFE) or by increased gas fractions. By computing offsets from the resolved Kennicutt-Schmidt relation ($\Sigma _{\rm H_2}$ versus ΣSFR) and the molecular gas main sequence (Σ⋆ versus $\Sigma _{\rm H_2}$), we conclude that the primary driver of the central starburst is an elevated SFE. We also show that the enhancement in ΣSFR is accompanied by a dilution in O/H, consistent with a triggering that is induced by metal poor gas inflow. These observational signatures are found in both undisturbed (9/12 galaxies in our sample) and recently merged galaxies, indicating that both interactions and secular mechanisms contribute to central starbursts.


Sign in / Sign up

Export Citation Format

Share Document