Balancing the competing needs of climate change, biodiversity and rural communities

2009 ◽  
Vol 2009 ◽  
pp. 249-249
Author(s):  
H Prosser

The work of the UK Climate Change Commission (UKCCC) in recommending targets and options for reducing emissions of greenhouse gases is focusing attention on what agriculture and land use can contribute to deliver these targets. Although overall the major issue is the reduction of carbon dioxide emissions from energy use, agriculture and land use are significant emitters of methane and nitrous oxide. UKCCC has identified three main routes by which emissions can be reduced• Lifestyle change with less reliance on carbon intensive produce -eg switching from sheep, and beef to pig, poultry and vegetables.• Changing farm practices – eg to improve use of fertilisers and manures• Using new technology on farms – eg modifying rumen processes, anaerobic digestion.

2017 ◽  
Vol 98 (6) ◽  
pp. 1227-1229 ◽  
Author(s):  
Angus R. Westgarth-Smith

Ocean acidification (OA) is caused by increasing atmospheric concentrations of carbon dioxide, which dissolves in seawater to produce carbonic acid. This carbonic acid reduces the availability of dissolved aragonite needed for production of some invertebrate exoskeletons with potentially severe consequences for marine calcifier populations. There is a lack of public information on OA with less than 1% of press coverage on OA compared with climate change; OA is not included in UK GCSE and A Level specifications and textbooks; environmental campaigners are much less active in campaigning about OA compared with climate change. As a result of the lack of public awareness OA is rarely discussed in the UK Parliament. Much more public education about OA is needed so that people can respond to the urgent need for technological and lifestyle changes needed to massively reduce carbon dioxide emissions.


2009 ◽  
Vol 33 (1) ◽  
pp. 89-104 ◽  
Author(s):  
A I Brown ◽  
G P Hammond ◽  
C I Jones ◽  
F J Rogers

Historic trends and future projections of energy use and carbon dioxide emissions associated with the United Kingdom building stock are analysed for the period 1970-2050. Energy use in housing is found to rise at a slightly slower rate than the increase in household numbers, which totalled some 25.5 million in 2000. It appears feasible to reduce carbon dioxide (CO2) emissions in the UK domestic building stock by more than 65% by 2050. But this would require a significant take-up of energy saving measures and the adoption of various low or zero carbon (LZC) energy technologies. Non-domestic buildings consisted of some 1.98 million premises in 2000. Anticipated changes in the UK Building Regulations will lead to reductions in energy use and carbon emissions of up to 17% and 12% respectively for 2010 standard buildings. Improvements in the non-domestic building stock and industrial processing could lead to a reduction of nearly 59% in CO2 emissions, via the adoption of LZC energy technologies. Thus, the potential for ‘greening' the UK building stock – making it environmentally benign - is large, but the measures needed to achieve this would present a significant challenge to the UK government, domestic householders, and industry in the broadest sense.


2020 ◽  
Author(s):  
Robin D. Lamboll ◽  
Zebedee R. J. Nicholls ◽  
Jarmo S. Kikstra ◽  
Malte Meinshausen ◽  
Joeri Rogelj

Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions for input into climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. Here we present silicone, an open-source Python package which infers anthropogenic emissions of missing species based on other known emissions. For example, it can infer nitrous oxide emissions in one scenario based on carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon dioxide emissions in other scenarios. This broadens the range of IAMs available for exploring projections of future climate change. Silicone forms part of the open-source pipeline for assessments of the climate implications of IAMs by the IAM consortium (IAMC). A variety of infilling options are outlined and their suitability for different cases are discussed. The code and notebooks explaining details of the package and how to use it are available from the GitHub repository, https://github.com/GranthamImperial/silicone. There is an additional repository showing uses of the code to complement existing research at https://github.com/GranthamImperial/silicone_examples.


Climate Change is a serious global environmental concern. The global increases in carbon dioxide concentration are due primarily to fossil fuel use and land use change, while those of methane and nitrous oxide are primarily due to agriculture. Global Warming is a specific example of the broader term ‘Climate Change’ and refers to the observed increase in the average temperature of the atmosphere and oceans in recent decades. Its effect particularly on developing countries is adverse as their capacity and resources to deal with the challenge is limited. Scientific studies have shown that the global atmospheric concentrations of carbon dioxide, methane and nitrous oxide which are the most important Green House Gases, have increased markedly as a result of human activities since 1750 and now far exceed pre-industrial values. Climate change is impacting the natural ecosystems and is expected to have substantial adverse effects in India, mainly on agriculture, water storage in the Himalayan glaciers which are the source of major rivers and ground water recharge, sea-level rise, and threats to a long coastline and habitations. Climate change will also cause increased frequency of extreme events such as floods, and droughts. These in turn will impact India’s food security problems and water security. India over the past three decades have mastered the use of space technology. The operational satellites INSAT and IRS have heralded an era of Space observations with high resolution observations of land, ocean and atmosphere. The IRS satellites are providing observations of parameters such as land use/cover, forest, water bodies, crops etc. The satellite data is operationally used for environmental studies and long term database on vegetation, soil condition, rainfall, ground water etc. is being generated. Some of the unique studies are Biosphere Reserve Monitoring, Mapping of Glacial Lakes & Water Bodies in Himalayas, Biodiversity Mapping, Early Warning of Drought and Severe Weather Events. The paper presents details of the studies and salient results.


2020 ◽  
Vol 13 (11) ◽  
pp. 5259-5275
Author(s):  
Robin D. Lamboll ◽  
Zebedee R. J. Nicholls ◽  
Jarmo S. Kikstra ◽  
Malte Meinshausen ◽  
Joeri Rogelj

Abstract. Integrated assessment models (IAMs) project future anthropogenic emissions which can be used as input for climate models. However, the full list of climate-relevant emissions is lengthy and most IAMs do not model all of them. Here we present Silicone, an open-source Python package which infers anthropogenic emissions of unmodelled species based on other reported emissions projections. For example, it can infer nitrous oxide emissions in one scenario based on carbon dioxide emissions from that scenario plus the relationship between nitrous oxide and carbon dioxide emissions found in other scenarios. Infilling broadens the range of IAMs available for exploring projections of future climate change, and hence Silicone forms part of the open-source pipeline for assessments of the climate implications of IAM scenarios, led by the Integrated Assessment Modelling Consortium (IAMC). This paper presents a variety of infilling options and outlines their suitability for different cases. We recommend certain infilling techniques as good defaults but emphasise that considering the specifics of the model being infilled will produce better results. We demonstrate the package's utility with three examples: infilling all required gases for a pathway with data for only one emission species, splitting up a Kyoto emissions total into separate gases, and complementing a set of idealised emissions curves to provide a complete, consistent emissions portfolio. The code and notebooks explaining details of the package and how to use it are available on GitHub (https://github.com/GranthamImperial/silicone, last access: 2 November 2020). The repository with this paper's examples and uses of the code to complement existing research is available at https://github.com/GranthamImperial/silicone_examples (last access: 2 November 2020).


Author(s):  
R.G. Nelson, ◽  
C.H. Hellwinckel, ◽  
C.C. Brandt, ◽  
T.O. West, ◽  
D.G. De La Torre Ugarte, ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4599
Author(s):  
Mohd Alsaleh ◽  
Muhammad Mansur Abdulwakil ◽  
Abdul Samad Abdul-Rahim

Under the current European Union (EU) constitution approved in May 2018, EU countries ought to guarantee that estimated greenhouse-gas releases from land use, land-use change, or forestry are entirely compensated by an equivalent accounted removal of carbon dioxide (CO2) from the air during the period between 2021 and 2030. This study investigates the effect of sustainable hydropower production on land-use change in the European Union (EU28) region countries during 1990–2018, using the fully modified ordinary least squares (FMOLS). The results revealed that land-use change incline with an increase in hydropower energy production. In addition, economic growth, carbon dioxide emissions, and population density are found to be increasing land-use changes, while institutional quality is found to be decreasing land-use change significantly. The finding implies that land-use change in EU28 region countries can be significantly increased by mounting the amount of hydropower energy production to achieve Energy Union aims by 2030. This will finally be spread to combat climate change and environmental pollution. The findings are considered robust as they were checked with DOLS and pooled OLS. The research suggests that the EU28 countries pay attention to the share of hydropower in their renewable energy combination to minimize carbon releases. Politicians and investors in the EU28 region ought to invest further in the efficiency and sustainability of hydropower generation to increase its production and accessibility without further degradation of forest and agricultural conditions. The authorities of the EU28 region should emphasize on efficiency and sustainability of hydropower energy with land-use management to achieve the international commitments for climate, biodiversity, and sustainable development, reduce dependence on fossil fuel, and energy insecurity.


Sign in / Sign up

Export Citation Format

Share Document