scholarly journals Logic-Sensitivity of Aristotelian Diagrams in Non-Normal Modal Logics

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 128
Author(s):  
Lorenz Demey

Aristotelian diagrams, such as the square of opposition, are well-known in the context of normal modal logics (i.e., systems of modal logic which can be given a relational semantics in terms of Kripke models). This paper studies Aristotelian diagrams for non-normal systems of modal logic (based on neighborhood semantics, a topologically inspired generalization of relational semantics). In particular, we investigate the phenomenon of logic-sensitivity of Aristotelian diagrams. We distinguish between four different types of logic-sensitivity, viz. with respect to (i) Aristotelian families, (ii) logical equivalence of formulas, (iii) contingency of formulas, and (iv) Boolean subfamilies of a given Aristotelian family. We provide concrete examples of Aristotelian diagrams that illustrate these four types of logic-sensitivity in the realm of normal modal logic. Next, we discuss more subtle examples of Aristotelian diagrams, which are not sensitive with respect to normal modal logics, but which nevertheless turn out to be highly logic-sensitive once we turn to non-normal systems of modal logic.

1992 ◽  
Vol 16 (3-4) ◽  
pp. 231-262
Author(s):  
Philippe Balbiani

The beauty of modal logics and their interest lie in their ability to represent such different intensional concepts as knowledge, time, obligation, provability in arithmetic, … according to the properties satisfied by the accessibility relations of their Kripke models (transitivity, reflexivity, symmetry, well-foundedness, …). The purpose of this paper is to study the ability of modal logics to represent the concepts of provability and unprovability in logic programming. The use of modal logic to study the semantics of logic programming with negation is defended with the help of a modal completion formula. This formula is a modal translation of Clack’s formula. It gives soundness and completeness proofs for the negation as failure rule. It offers a formal characterization of unprovability in logic programs. It characterizes as well its stratified semantics.


1999 ◽  
Vol 64 (1) ◽  
pp. 99-138 ◽  
Author(s):  
Marcus Kracht ◽  
Frank Wolter

AbstractThis paper shows that non-normal modal logics can be simulated by certain polymodal normal logics and that polymodal normal logics can be simulated by monomodal (normal) logics. Many properties of logics are shown to be reflected and preserved by such simulations. As a consequence many old and new results in modal logic can be derived in a straightforward way, sheding new light on the power of normal monomodal logic.


2019 ◽  
Vol 13 (2) ◽  
pp. 416-435 ◽  
Author(s):  
SERGEI P. ODINTSOV ◽  
STANISLAV O. SPERANSKI

AbstractWe shall be concerned with the modal logic BK—which is based on the Belnap–Dunn four-valued matrix, and can be viewed as being obtained from the least normal modal logic K by adding ‘strong negation’. Though all four values ‘truth’, ‘falsity’, ‘neither’ and ‘both’ are employed in its Kripke semantics, only the first two are expressible as terms. We show that expanding the original language of BK to include constants for ‘neither’ or/and ‘both’ leads to quite unexpected results. To be more precise, adding one of these constants has the effect of eliminating the respective value at the level of BK-extensions. In particular, if one adds both of these, then the corresponding lattice of extensions turns out to be isomorphic to that of ordinary normal modal logics.


2019 ◽  
Vol 34 (1) ◽  
pp. 99-107
Author(s):  
Robert Martin

Contrary to modal logic, the linguistic approach to modality, without in any way minimizing modal relationships as such (for example by way of the “square of opposition”), tends towards a relative calculation of the knowledge and the beliefs of the speaker. In this article the (universal) modal of the universe of beliefs or of possible worlds will be updated, focusing on how the signs of concession can be interpreted, then defining the “modal calculus” (conceived as a system suitable for determining the modal content of any proposition) in order to apply it to concessive relationships.


1986 ◽  
Vol 51 (1) ◽  
pp. 166-179 ◽  
Author(s):  
W. B. Ewald

In this article we shall construct intuitionistic analogues to the main systems of classical tense logic. Since each classical modal logic can be gotten from some tense logic by one of the definitions(i) □ p ≡ p ∧ Gp ∧ Hp, ◇p ≡ p ∨ Fp ∨ Pp; or,(ii) □ p ≡ p ∧ Gp, ◇p = p ∨ Fp(see [5]), we shall find that our intuitionistic tense logics give us analogues to the classical modal logics as well.We shall not here discuss the philosophical issues raised by our logics. Readers interested in the intuitionistic view of time and modality should see [2] for a detailed discussion.In §2 we define the Kripke models for IKt, the intuitionistic analogue to Lemmon's system Kt. We then prove the completeness and decidability of this system (§§3–5). Finally, we extend our results to other sorts of tense logic and to modal logic.In the language of IKt, we have: sentence-letters p, q, r, etc.; the (intuitionistic) connectives ∧, ∨, →, ¬; and unary operators P (“it was the case”), F (it will be the case”), H (“it has always been the case”) and G (“it will always be the case”). Formulas are defined inductively: all sentence-letters are formulas; if X is a formula, so are ¬X, PX, FX, HX, and GX; if X and Y are formulas, so are X ∧ Y, X ∨ Y, and X → Y. We shall see that, in contrast to classical tense logic, F and P cannot be defined in terms of G and H.


2019 ◽  
pp. 149-161
Author(s):  
Luciano Floridi

In this chapter, the principle of information closure (PIC) is defined and defended against a sceptical objection similar to the one discussed by Dretske in relation to the principle of epistemic closure. If successful, given that PIC is equivalent to the axiom of distribution and that the latter is one of the conditions that discriminate between normal and non-normal modal logics, one potentially good reason to look for a formalization of the logic of ‘S is informed that p’ among the non-normal modal logics, which reject the axiom, is also removed. This is not to argue that the logic of ‘S is informed that p’ should be a normal modal logic, but that it could still be, insofar as the objection that it could not be, based on the sceptical objection against PIC, has been removed. In other words, this chapter argues that the sceptical objection against PIC fails, so such an objection provides no ground to abandon the normal modal logic B (also known as KTB) as a formalization of ‘S is informed that p’, which remains plausible insofar as this specific obstacle is concerned.


1983 ◽  
Vol 48 (4) ◽  
pp. 941-964 ◽  
Author(s):  
W.J. Blok ◽  
P. Köhler

A well-known result, going back to the twenties, states that, under some reasonable assumptions, any logic can be characterized as the set of formulas satisfied by a matrix 〈, F〉, where is an algebra of the appropriate type, and F a subset of the domain of , called the set of designated elements. In particular, every quasi-classical modal logic—a set of modal formulas, containing the smallest classical modal logic E, which is closed under the inference rules of substitution and modus ponens—is characterized by such a matrix, where now is a modal algebra, and F is a filter of . If the modal logic is in fact normal, then we can do away with the filter; we can study normal modal logics in the setting of varieties of modal algebras. This point of view was adopted already quite explicitly in McKinsey and Tarski [8]. The observation that the lattice of normal modal logics is dually isomorphic to the lattice of subvarieties of a variety of modal algebras paved the road for an algebraic study of normal modal logics. The algebraic approach made available some general results from Universal Algebra, notably those obtained by Jónsson [6], and thereby was able to contribute new insights in the realm of normal modal logics [2], [3], [4], [10].The requirement that a modal logic be normal is rather a severe one, however, and many of the systems which have been considered in the literature do not meet it. For instance, of the five celebrated modal systems, S1–S5, introduced by Lewis, S4 and S5 are the only normal ones, while only SI fails to be quasi-classical. The purpose of this paper is to generalize the algebraic approach so as to be applicable not just to normal modal logics, but to quasi-classical modal logics in general.


Sign in / Sign up

Export Citation Format

Share Document