The application of high-resolution methods for DOA estimation using a linear antenna array

Author(s):  
Lotfi Osman ◽  
Imen Sfar ◽  
Ali Gharsallah

This paper presents results of direction of arrival (DOA) estimation using multiple signal classification (MUSIC), Root-MUSIC, and estimation of signal parameters via rotational invariance technique algorithms. As is well known, these algorithms are mainly based on the specific properties of the signal covariance matrix as well as the decomposition of the observation space into two subspaces, one for the signal and the other for the noise. Here, we are particularly interested in the quality of sources localization considering only the case of uncorrelated radio frequency signals impinging on an antenna array. A measurement system consisting of a linear array antenna and a five-port network applicable to a demodulator such as a receiver is used for the DOA estimation process. Co-simulations performed with the Advanced Device System and Matlab yielded interesting results not only on their performance but also on their limitation.

Author(s):  
Sidi Mohamed Hadj Irid ◽  
Samir Kameche ◽  
Said Assous

<p>In order to improve resolution and direction of arrival (DOA) estimation of two closely spaced sources, in context of array processing, a new algorithm is presented. However, the proposed algorithm combines both spatial sampling technic to widen the resolution and a high resolution method which is the Multiple Signal Classification (MUSIC) to estimate the DOA of two closely spaced sources impinging on the far-field of Uniform Linear Array (ULA). Simulations examples are discussed to demonstrate the performance and the effectiveness of the proposed approach (referred as Spatial sampling MUSIC SS-MUSIC) compared to the classical MUSIC method when it’s used alone in this context.</p>


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2651
Author(s):  
Oluwole John Famoriji ◽  
Thokozani Shongwe

A spherical antenna array (SAA) is the configuration of choice in obtaining an antenna array with isotropic characteristics. An SAA has the capacity to receive an electromagnetic wave (EM) with equal intensity irrespective of the direction-of-arrival (DoA) and polarization. Therefore, the DoA estimation of electromagnetic (EM) waves impinging on an SAA with unknown mutual coupling needs to be considered. In the spherical domain, the traditional multiple signal classification algorithm (SH-MUSIC) is faced with a computational complexity problem. This paper presents a one-dimensional MUSIC method (1D-MUSIC) for the estimation of the azimuth and elevation angles. An intermediate mapping matrix that exists between Fourier series and the spherical harmonic function is designed, and the Fourier series Vandermonde structure is used for the realization of the polynomial rooting technique. This mapping matrix can be computed prior to the DoA estimation, and it is only a function of the array configuration. Based on the mapping matrix, the 2-D angle search is transformed into two 1-D angle findings. Employing the features of the Fourier series, two root polynomials are designed for the estimation of the elevation and azimuth angles, spontaneously. The developed method avoids the 2-D spectral search, and angles are paired in automation. Both numerical simulation results, and results from experimental measured data (i.e., with mutual coupling effect incorporated), show the validity, potency, and potential practical application of the developed algorithm.


2014 ◽  
Vol 926-930 ◽  
pp. 2871-2875
Author(s):  
Ying Li ◽  
Gong Zhang

This paper discussed the problem of two dimensional (2D) direction of arrival (DOA) estimation for multi-input multi-output (MIMO) radar. The minimum-redundancy linear array (MLRA) is introduced into the transmitting array and receiving array, which enables the high efficiency of the radar system. By utilizing the algorithm of multiple signal classification (MUSIC), we illustrate that the proposed scheme performs better than the uniform linear arrays (ULA) configuration under the same conditions. Simulation results verify the effectiveness of our scheme.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3043 ◽  
Author(s):  
Weike Zhang ◽  
Xi Chen ◽  
Kaibo Cui ◽  
Tao Xie ◽  
Naichang Yuan

In order to improve the angle measurement performance of a coprime linear array, this paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array based on the multiple invariance estimation of signal parameters via rotational invariance techniques (MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To fully use the subarray elements, the DOA estimation precision is higher compared with existing algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by using the relationship between the signal subspace of two subarrays. Simulation results verify the effectiveness of the proposed algorithm.


Author(s):  
Eddy Taillefer ◽  
Jun Cheng ◽  
Takashi Ohira

This chapter presents direction of arrival (DoA) estimation with a compact array antenna using methods based on reactance switching. The compact array is the single-port electronically steerable parasitic array radiator (Espar) antenna. The antenna beam pattern is controlled though parasitic elements loaded with reactances. DoA estimation using an Espar antenna is proposed with the power pattern cross correlation (PPCC), reactance-domain (RD) multiple signal classification (MUSIC), and, RD estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms. The three methods exploit the reactance diversity provided by an Espar antenna to correlate different antenna output signals measured at different times and for different reactance values. The authors hope that this chapter allows the researchers to appreciate the issues that may be encountered in the implementation of direction-finding application with a single-port compact array like the Espar antenna.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Chao Liu ◽  
Shuai Xiang ◽  
Liangfeng Xu ◽  
Zhengfei Fang

A dual-polarized multiple signal classification (DP-MUSIC) algorithm is presented to estimate the arrival directions and polarizations for a dual-polarized conformal array. Each polarization signal is decomposed into two orthogonal polarization components, which are considered to be a pair of coherent signals coming from the same direction but different polarization. The polarization parameters are modeled as the equivalent coherence coefficients of the orthogonal polarization components. Then, the method of decoherence can be used to decouple the information of polarization states and signal angles. After that, the direction of arrival (DOA) and polarization parameters can be estimated by the DP-MUSIC algorithm. Moreover, the angles of incident direction are re-estimated, which greatly improves the accuracy of DOA estimation. The Cramer–Rao bound (CRB) is derived and the effectiveness of the proposed algorithm is verified by Monte Carlo simulations.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Minjie Wu ◽  
Xiaofa Zhang ◽  
Jingjian Huang ◽  
Naichang Yuan

Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC), termed as GA-MUSIC, to solve the direction of arrival (DOA) for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.


2013 ◽  
Vol 748 ◽  
pp. 634-639 ◽  
Author(s):  
Jian Rong Wang ◽  
Ju Zhang ◽  
Song Gun Hyon ◽  
Jian Guo Wei

In order to locate the sound source based on the microphone uniform linear array and reduce the impact of noise and reflection, improved multiple signal classification algorithm and a kind of weighted average filters be used in this paper. According to the microphone array speech processing characteristics, we improved the traditional multiple signal classification algorithm and designed a kind of weighted average filters. Then, we made the computer simulation experiments. The experimental results show that the location of the sound source is the peak with the highest power in the spatial spectrum. Besides, the frequency domain diagram is more smoothly and the power of the noise and reflection is effectively reduced except sound source through the weighted average processing. Therefore, improved multiple signal classification algorithm can achieve sound source localization based on the microphone uniform linear array. And the impact of the noise and reflection is effectively reduced by processing of the weighted average filters.


Sign in / Sign up

Export Citation Format

Share Document