A multi-slotted antenna for LTE/5G Sub-6 GHz wireless communication applications

Author(s):  
Rezaul Azim ◽  
AKM Moinul H. Meaze ◽  
Adnan Affandi ◽  
Md Mottahir Alam ◽  
Rumi Aktar ◽  
...  

Abstract This paper presents a low-profile multi-slotted patch antenna for long term evolution (LTE) and fifth-generation (5G) communication applications. The studied antenna comprised of a stepped patch and a ground plane. To attain the required operating band, three slots have been inserted within the patch. The insertion of the slots enhances the capacitive effect and helps the prototype antenna to achieve an operating band ranging from 3.15 to 5.55 GHz (S11 ≤−10 dB), covering the N77/N78/N79 for sub-6 GHz 5G wireless communications and LTE bands of 22/42/43/46. The wideband antenna presented in this paper offers omnidirectional stable radiation patterns, good gains, and efficiency with a compact size which make this design an ideal contender for wireless fidelity (WiFi), wireless local area network (WLAN), LTE, and sub-6 GHz 5G communication applications.

2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Do-Gu Kang ◽  
Jinpil Tak ◽  
Jaehoon Choi

A low-profile repeater antenna with parasitic elements for on-on-off WBAN applications is proposed. The proposed antenna consists of a planar inverted-F antenna (PIFA), two parasitic elements, and a ground plane with a slot. Due to the slot, the impedance matching of the resonance formed by the PIFA is improved, which makes the proposed antenna operate in the 5.8 GHz industrial, scientific, and medical (ISM) band. To cover the 5.2 GHz wireless local area network (WLAN) band, a dual resonance characteristic is realized by the slot and the two parasitic elements. The first coupling between the PIFA and the slot not only makes the slot operate as a resonator, but also forms secondary coupling between the slot and the two parasitic elements. The two parasitic elements operate as an additional resonator due to secondary coupling. The antenna has the enhanced near surface radiation in the 5.8 GHz ISM band due to addition of the slot and radiation toward off-body direction in the 5.2 GHz WLAN band. In order to evaluate antenna performance considering the human body effect, the antenna characteristics on a human equivalent phantom are analyzed.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Sangjin Jo ◽  
Hyunjin Choi ◽  
Beomsoo Shin ◽  
Sangyeol Oh ◽  
Jaehoon Lee

We present a simple coplanar waveguide- (CPW-) fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN) applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.


2015 ◽  
Vol 9 (1) ◽  
pp. 213-218 ◽  
Author(s):  
Liping Han ◽  
Longfei Hao ◽  
Liyun Yan ◽  
Runbo Ma ◽  
Wenmei Zhang

A compact dual-frequency antenna with enhanced bandwidth is proposed in this paper. Dual-frequency operation is realized by cutting a slot in the elliptical patch, and bandwidth enhancement is achieved by using a partial ground plane. Compared with the conventional half-wave antenna, the antenna has a compact size of 24 × 20 mm2, which equals to 0.38 λ1× 0.31 λ1(λ1, the guided wavelength at the first resonant frequency). The dual-frequency antenna with a partial rectangle ground and a partial arc-shaped ground is investigated for impedance matching. Simulated results indicate that the antenna with a partial arc-shaped ground can obtain a larger bandwidth for two bands than that with a partial rectangle ground. Experimental results show that the antenna with a partial arc-shaped ground can operate in 2.4 and 5 GHz bands, which covers the 2.4, 5.2 and 5.8 GHz for wireless local area network. The impedance bandwidths of two bands are 9.5 and 13.6%, respectively. Also, good radiation performances have been achieved at two bands.


2018 ◽  
Vol 7 (5) ◽  
pp. 26-30
Author(s):  
M. Harbadji ◽  
A. Boufrioua ◽  
T. A. Denidni

This paper presents a novel compact coplanar waveguide (CPW) monopole fractal-shaped antenna using fractal patch composed of hexagons with defected ground plane. Inclusion of a pair of S-shaped slots on the ground plane is used to  extend the antenna impedance bandwidth and to provide multiband operation. The antenna has a compact size of 35×35×1.27 mm3 which is compact. The antenna is designed, fabricated and measured. Good performances in terms of return loss, gain and radiation pattern are obtained in the  operating bands, which makes the proposed antenna a good  candidate for multiband wireless systems. The obtained results show that the antenna operates at Bluetooth,Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN).


Author(s):  
Poonam Thanki ◽  
Falguni Raval

Aims: This paper presents the development of Co-Planar Waveguide (CPW) fed dualband, compact, and flexible antenna. The antenna is designed on flexible substrate jeans; so, it is suitable for wearable applications. <p></p> Objectives: The proposed antenna generates dual-band at 3.36GHz –3.61GHz and at 5.01 GHz – 5.18 GHz. The antenna has a compact size of 40×30 mm2. The antenna consists of a rectangular patch having a slot which is responsible for the first band and slot in the ground plane which is responsible for the second band. <p></p> Methods: By optimizing the dimensions, the antenna gives dual-band at 3.5 GHz and 5.1 GHz with impedance bandwidth of 250 MHz and 170 MHz, respectively. The performance of the antenna such as gain and radiation pattern over the operating band has been also discussed. <p></p> Conclusion: This proposed antenna with the first band at 3.5GHz is suitable for Wi-MAX (Worldwide Interoperability for Microwave Access) and second band at 5.1GHz is suitable for Higher Wireless Local Area Network applications (WLAN). <p></p>


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


2019 ◽  
Vol 11 (4) ◽  
pp. 420-427
Author(s):  
Divya Chaturvedi ◽  
Arvind Kumar ◽  
S. Raghavan

AbstractIn this work, simple, low profile, compact quarter-mode substrate-integrated waveguide (QMSIW)-based antennas are proposed for Wireless Local Area Network (WLAN) at 5.2/5.5 GHz and Wireless Body Area Network (WBAN) at 5.8 GHz, respectively. By implementing QMSIW technique, the electrical size of the antenna is reduced up to 1/4th of the conventional circular SIW cavities. Thanks to the quarter mode concept, the antenna size is reduced significantly by preserving its dominant mode. The resonant frequency of the dominant mode TM010 is independently tuned at 5.2, 5.5, and 5.8 GHz after loading the QMSIW cavity with metalized via holes, subsequently. The on-body performance of the antenna is verified on pork tissues at 5.8 GHz and it is found to be insensitive with respect to surroundings. The measured gain and simulated efficiency of the proposed antenna at 5.8 GHz in free space are 4.8 dBi and 92%, while in the proximity of pork tissues values are 3.25 dBi and 57%, respectively. Moreover, the measurement results demonstrate a good matching with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document