Effects of maternal low-protein diet and spontaneous physical activity on the transcription of neurotrophic factors in the placenta and the brains of mothers and offspring rats

Author(s):  
Jéssica Fragoso ◽  
Gabriela Carvalho Jurema Santos ◽  
Helyson Thomaz da Silva ◽  
Emmanuelle Loizon ◽  
Viviane de Oliveira Nogueira Souza ◽  
...  

Abstract Maternal protein restriction and physical activity can affect the interaction mother–placenta–fetus. This study quantified the gene expression of brain-derived neurotrophic factor (BDNF), neurothrophin 4, tyrosine kinase receptor B (TrkB/NTRK2), insulin-like growth factor (IGF-1), and insulin-like growth factor receptor (IGF-1r) in the different areas of mother’s brain (hypothalamus, hippocampus, and cortex), placenta, and fetus’ brain of rats. Female Wistar rats (n = 20) were housed in cages containing a running wheel for 4 weeks before gestation. According to the distance spontaneously traveled daily, rats were classified as inactive or active. During gestation, on continued access to the running wheel, active and inactive groups were randomized to receive normoprotein diet (18% protein) or a low-protein (LP) diet (8% protein). At day 20 of gestation, gene expression of neurotrophic factors was analyzed by quantitative polymerase chain reaction in different brain areas and the placenta. Dams submitted to a LP diet during gestation showed upregulation of IGF-1r and BDNF messenger RNA in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, and BDNF, NTRK2, IGF-1 and IGF-1r in the cortex. In the placenta, there was a downregulation of IGF-1. In the brain of pups from mothers on LP diet, IGF-1r and NTRK2 were downregulated. Voluntary physical activity attenuated the effects of LP diet on IGF-1r in the hypothalamus, IGF-1r and NTRK2 in the hippocampus, IGF-1 in the placenta, and NTRK2 in the fetus’ brain. In conclusion, both maternal protein restriction and spontaneous physical activity influence the gene expression of BDNF, NTRK2, IGF-1, and IGF-1r, with spontaneous physical activity being able to normalize in part the defects caused by protein restriction during pregnancy.

2011 ◽  
Vol 108 (6) ◽  
pp. 998-1007 ◽  
Author(s):  
Shasha Zheng ◽  
Michelle Rollet ◽  
Kefeng Yang ◽  
Yuan-Xiang Pan

Maternal exposure to environmental agents throughout pregnancy may change certain metabolic processes during the offspring's mammary gland development and alter the epigenome. This may predispose the offspring to breast cancer later in life. The purpose of the present study was to examine the effect of maternal protein restriction on the regulation of cyclin-dependent kinase inhibitor 1 (p21) gene expression in the mammary gland of rat offspring. Timed-mated Sprague–Dawley rats were fed one of the two isoenergetic diets, control (C, 18 % casein) or low protein (LP, 9 % casein), during gestation. Compared with the C group, LP offspring showed a decrease of p21 in the mammary gland at both the mRNA and protein levels. Chromatin immunoprecipitation assay demonstrated that the down-regulation of p21 transcription in LP offspring was associated with reduced acetylation of histone H3 and dimethylation of H3K4 within the p21 promoter region, but was not associated with acetylation of histone H4 or histone methylation. DNA methylation analysis using bisulphite sequencing did not detect differences in methylation at the p21 promoter between the offspring of the C and LP groups. We conclude that maternal protein restriction inhibits p21 gene expression in the mammary gland of offspring through histone modifications at the promoter region of the p21 gene.


Sign in / Sign up

Export Citation Format

Share Document