The need for a quantitative assessment of animal welfare trade-offs in climate change mitigation scenarios

2015 ◽  
Vol 6 (1) ◽  
pp. 9-11 ◽  
Author(s):  
P. Llonch ◽  
A. B. Lawrence ◽  
M. J. Haskell ◽  
I. Blanco-Penedo ◽  
S. P. Turner
Author(s):  
John Tzilivakis ◽  
Kathleen Lewis ◽  
Andrew Green ◽  
Douglas Warner

Purpose – In order to achieve reductions in greenhouse gas (GHG) emissions, it is essential that all industry sectors have the appropriate knowledge and tools to contribute. This includes agriculture, which is considered to contribute about a third of emissions globally. This paper reports on one such tool: IMPACCT: Integrated Management oPtions for Agricultural Climate Change miTigation. The paper aims to discuss these issues. Design/methodology/approach – IMPACCT focuses on GHGs, carbon sequestration and associated mitigation options. However, it also attempts to include information on economic and other environmental impacts in order to provide a more holistic perspective. The model identifies mitigation options, likely economic impacts and any synergies and trade-offs with other environmental objectives. The model has been applied on 22 case study farms in seven Member States. Findings – The tool presents some useful concepts for developing carbon calculators in the future. It has highlighted that calculators need to evolve from simply calculating emissions to identifying cost-effective and integrated emissions reduction options. Practical implications – IMPACCT has potential to become an effective means of provided targeted guidance, as part of a broader knowledge transfer programme based on an integrated suite of guidance, tools and advice delivered via different media. Originality/value – IMPACCT is a new model that demonstrates how to take a more integrated approach to mitigating GHGs on farms across Europe. It is a holistic carbon calculator that presents mitigation options in the context other environmental and economic objectives in the search for more sustainable methods of food production.


2019 ◽  
Vol 26 (3) ◽  
pp. 1576-1591 ◽  
Author(s):  
Jonathan C. Doelman ◽  
Elke Stehfest ◽  
Detlef P. Vuuren ◽  
Andrzej Tabeau ◽  
Andries F. Hof ◽  
...  

2015 ◽  
Vol 16 (3) ◽  
pp. 332-352 ◽  
Author(s):  
Aiymgul Kerimray ◽  
Kanat Baigarin ◽  
Rocco De Miglio ◽  
Giancarlo Tosato

Author(s):  
Isabel Key ◽  
Alison Smith ◽  
Beth Turner ◽  
Alexandre Chausson ◽  
Cécile Girardin ◽  
...  

Nature-based solutions (NbS) are increasingly recognised for their potential to address both the climate and biodiversity crises. These outcomes are interdependent, and both rely on the capacity of NbS to support and enhance the health of an ecosystem: its biodiversity, the condition of its abiotic and biotic elements, and its capacity to function normally despite environmental change. However, while understanding of ecosystem health outcomes of nature-based interventions for climate change mitigation is growing, the outcomes of those implemented for adaptation remain poorly understood with evidence scattered across multiple disciplines. To address this, we conducted a systematic review of the outcomes of 109 nature-based interventions for climate change adaptation using 33 indicators of ecosystem health across eight broad categories (e.g. diversity, biomass, ecosystem functioning and population dynamics). We showed that 88% of interventions with positive outcomes for climate change adaptation also reported measurable benefits for ecosystem health. We also showed that interventions were associated with a 67% average increase in local species richness. All eight studies that reported benefits in terms of both climate change mitigation and adaptation also supported ecosystem health, leading to a triple win. However, there were also trade-offs, mainly for forest management and creation of novel ecosystems such as monoculture plantations of non-native species. Our review highlights two major limitations of research to date. First, only a limited selection of metrics are used to assess ecosystem health and these rarely include key aspects such as functional diversity and habitat connectivity. Second, taxonomic coverage is poor: 67% of outcomes assessed only plants and 57% did not distinguish between native and non-native species. Future research addressing these issues will allow the design and adaptive management of NbS to support healthy and resilient ecosystems, and thereby enhance their effectiveness for meeting both climate and biodiversity targets.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Purity Rima Mbaabu ◽  
Daniel Olago ◽  
Maina Gichaba ◽  
Sandra Eckert ◽  
René Eschen ◽  
...  

AbstractGrassland degradation and the concomitant loss of soil organic carbon is widespread in tropical arid and semi-arid regions of the world. Afforestation of degraded grassland, sometimes by using invasive alien trees, has been put forward as a legitimate climate change mitigation strategy. However, even in cases where tree encroachment of degraded grasslands leads to increased soil organic carbon, it may come at a high cost since the restoration of grassland-characteristic biodiversity and ecosystem services will be blocked. We assessed how invasion by Prosopis juliflora and restoration of degraded grasslands in a semi-arid region in Baringo, Kenya affected soil organic carbon, biodiversity and fodder availability. Thirty years of grassland restoration replenished soil organic carbon to 1 m depth at a rate of 1.4% per year and restored herbaceous biomass to levels of pristine grasslands, while plant biodiversity remained low. Invasion of degraded grasslands by P. juliflora increased soil organic carbon primarily in the upper 30 cm and suppressed herbaceous vegetation. We argue that, in contrast to encroachment by invasive alien trees, restoration of grasslands in tropical semi-arid regions can both serve as a measure for climate change mitigation and help restore key ecosystem services important for pastoralists and agro-pastoralist communities.


Sign in / Sign up

Export Citation Format

Share Document