scholarly journals The Geopolitics of Negative Emissions Technologies – Learning lessons from REDD+ and Renewable Energies for Afforestation, BECCS and Direct Air Capture

2021 ◽  
pp. 1-37
Author(s):  
Judith Kreuter ◽  
Markus Lederer
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jonas Meckling ◽  
Eric Biber

AbstractNegative emission strategies are central to avoiding catastrophic climate change. Engineered solutions such as direct air capture are far from cost-competitive. As past low-carbon technology transitions suggest, this calls for policy and political strategies beyond carbon pricing. We adopt a policy sequencing perspective that identifies policies that could create niche markets, building political support for later widespread deployment of direct air capture. Climate leaders could pursue an “incentives + mandates” policy strategy targeted at the oil and gas industry. These early moves could create global spillovers for follower countries by reducing technology cost and facilitating knowledge transfer through global firms.


2020 ◽  
Author(s):  
Sarah Deutz ◽  
André Bardow

Current climate targets require negative emissions. Direct air capture (DAC) is a promising negative emission technology, but energy and materials demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by Life Cycle Assessment (LCA) that the first commercial DAC plants in Hinwil and Hellisheiði can achieve negative emissions already today with carbon capture efficiencies of 85.4 % and 93.1 %. Climate benefits of DAC, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become important with up to 45 and 15 gCO<sub>2e</sub> per kg CO<sub>2</sub> captured, respectively. Large-scale deployment of DAC for<br>1 % of the global annual CO<sub>2</sub> emissions would not be limited by material and energy availability. Other environmental impacts would increase by less than 0.057 %. Energy source and efficiency are essential for DAC to enable both negative emissions and low-carbon fuels.<br>


Author(s):  
Sabine Fuss

The 2°C target for global warming had been under severe scrutiny in the run-up to the climate negotiations in Paris in 2015 (COP21). Clearly, with a remaining carbon budget of 470–1,020 GtCO2eq from 2015 onwards for a 66% probability of stabilizing at concentration levels consistent with remaining below 2°C warming at the end of the 21st century and yearly emissions of about 40 GtCO2 per year, not much room is left for further postponing action. Many of the low stabilization pathways actually resort to the extraction of CO2 from the atmosphere (known as negative emissions or Carbon Dioxide Removal [CDR]), mostly by means of Bioenergy with Carbon Capture and Storage (BECCS): if the biomass feedstock is produced sustainably, the emissions would be low or even carbon-neutral, as the additional planting of biomass would sequester about as much CO2 as is generated during energy generation. If additionally carbon capture and storage is applied, then the emissions balance would be negative. Large BECCS deployment thus facilitates reaching the 2°C target, also allowing for some flexibility in other sectors that are difficult to decarbonize rapidly, such as the agricultural sector. However, the large reliance on BECCS has raised uneasiness among policymakers, the public, and even scientists, with risks to sustainability being voiced as the prime concern. For example, the large-scale deployment of BECCS would require vast areas of land to be set aside for the cultivation of biomass, which is feared to conflict with conservation of ecosystem services and with ensuring food security in the face of a still growing population.While the progress that has been made in Paris leading to an agreement on stabilizing “well below 2°C above pre-industrial levels” and “pursuing efforts to limit the temperature increase to 1.5°C” was mainly motivated by the extent of the impacts, which are perceived to be unacceptably high for some regions already at lower temperature increases, it has to be taken with a grain of salt: moving to 1.5°C will further shrink the time frame to act and BECCS will play an even bigger role. In fact, aiming at 1.5°C will substantially reduce the remaining carbon budget previously indicated for reaching 2°C. Recent research on the biophysical limits to BECCS and also other negative emissions options such as Direct Air Capture indicates that they all run into their respective bottlenecks—BECCS with respect to land requirements, but on the upside producing bioenergy as a side product, while Direct Air Capture does not need much land, but is more energy-intensive. In order to provide for the negative emissions needed for achieving the 1.5°C target in a sustainable way, a portfolio of negative emissions options needs to minimize unwanted effects on non–climate policy goals.


2021 ◽  
Author(s):  
Sarah Deutz ◽  
André Bardow

Current climate targets require negative emissions. Direct air capture (DAC) is a promising negative emission technology, but energy and materials demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by Life Cycle Assessment (LCA) that the first commercial DAC plants in Hinwil and Hellisheiði can achieve negative emissions already today with carbon capture efficiencies of 85.4 % and 93.1 %. Climate benefits of DAC, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become important with up to 45 and 15 gCO<sub>2e</sub> per kg CO<sub>2</sub> captured, respectively. Large-scale deployment of DAC for 1 % of the global annual CO<sub>2</sub> emissions would not be limited by material and energy availability. However, current small-scale production of amines for adsorbent production would be needed to be scaled up by an order of magnitude. Other environmental impacts would increase by less than 0.057 %. Energy source and efficiency are essential for DAC to enable both negative emissions and low-carbon fuels.<br>


Author(s):  
Jay Fuhrman ◽  
Andres Clarens ◽  
Katherine V Calvin ◽  
Scott C Doney ◽  
James A. Edmonds ◽  
...  

2020 ◽  
Author(s):  
Sarah Deutz ◽  
André Bardow

Current climate targets require negative emissions. Direct air capture (DAC) is a promising negative emission technology, but energy and materials demands lead to trade-offs with indirect emissions and other environmental impacts. Here, we show by Life Cycle Assessment (LCA) that the first commercial DAC plants in Hinwil and Hellisheiði can achieve negative emissions already today with carbon capture efficiencies of 85.4 % and 93.1 %. Climate benefits of DAC, however, depend strongly on the energy source. When using low-carbon energy, as in Hellisheiði, adsorbent choice and plant construction become important with up to 45 and 15 gCO<sub>2e</sub> per kg CO<sub>2</sub> captured, respectively. Large-scale deployment of DAC for<br>1 % of the global annual CO<sub>2</sub> emissions would not be limited by material and energy availability. Other environmental impacts would increase by less than 0.057 %. Energy source and efficiency are essential for DAC to enable both negative emissions and low-carbon fuels.<br>


2021 ◽  
Vol 46 ◽  
pp. 101487
Author(s):  
Marco Marchese ◽  
Giulio Buffo ◽  
Massimo Santarelli ◽  
Andrea Lanzini

Sign in / Sign up

Export Citation Format

Share Document