The Genetics of Reading and Language

2020 ◽  
Vol 23 (2) ◽  
pp. 101-102
Author(s):  
Michelle Luciano ◽  
Timothy C. Bates

AbstractRecounts how our collaboration with Nick Martin was shaped over two decades, leading to the first studies of predictions from the ‘Dual Route Cascaded’ computational model of reading in twins, and extending into the molecular work, first linkage, fine mapping of genes identified in pedigree studies, into now the genomewide association study era and the first polygenic risk scores for reading and their potential in early clarifying causality and validating interventions, as well as for future global collaborations in improving these predictors and identifying causal variants. We highlight Nick’s warm, future-focused optimism, support and inclusive approach without which none of this would have been possible. The circle of Nick asking, over half a century ago, ‘What genes do you think make some kids get better grades?’ has built a diverse scientific legacy involving thousands of papers and collaborations. The (heritable) traits of curiosity, boldness, warmth, interest in societally important questions, openness to new methods, ambition and collaborative skill to bring into being the infrastructure and samples needed for this research are rare, and we are grateful.

2020 ◽  
Author(s):  
Tiffany Amariuta ◽  
Kazuyoshi Ishigaki ◽  
Hiroki Sugishita ◽  
Tazro Ohta ◽  
Koichi Matsuda ◽  
...  

AbstractPoor trans-ethnic portability of polygenic risk score (PRS) models is a critical issue that may be partially due to limited knowledge of causal variants shared among populations. Hence, leveraging noncoding regulatory annotations that capture genetic variation across populations has the potential to enhance the trans-ethnic portability of PRS. To this end, we constructed a unique resource of 707 cell-type-specific IMPACT regulatory annotations by aggregating 5,345 public epigenetic datasets to predict binding patterns of 142 cell-type-regulating transcription factors across 245 cell types. With this resource, we partitioned the common SNP heritability of diverse polygenic traits and diseases from 111 GWAS summary statistics of European (EUR, average N=180K) and East Asian (EAS, average N=157K) origin. For 95 traits, we were able to identify a single IMPACT annotation most strongly enriched for trait heritability. Across traits, these annotations captured an average of 43.3% of heritability (se = 13.8%) with the top 5% of SNPs. Strikingly, we observed highly concordant polygenic trait regulation between populations: the same regulatory annotations captured statistically indistinguishable SNP heritability (fitted slope = 0.98, se = 0.04). Since IMPACT annotations capture both large and consistent proportions of heritability across populations, prioritizing variants in IMPACT regulatory elements may improve the trans-ethnic portability of PRS. Indeed, we observed that EUR PRS models more accurately predicted 21 tested phenotypes of EAS individuals when variants were prioritized by key IMPACT tracks (49.9% mean relative increase in R2). Notably, the improvement afforded by IMPACT was greater in the trans-ethnic EUR-to-EAS PRS application than in the EAS-to-EAS application (47.3% vs 20.9%, P < 1.7e-4). Overall, our study identifies a crucial role for functional annotations such as IMPACT to improve the trans-ethnic portability of genetic data, and this has important implications for future risk prediction models that work across populations.


Author(s):  
Taylor B. Cavazos ◽  
John S. Witte

ABSTRACTThe majority of polygenic risk scores (PRS) have been developed and optimized in individuals of European ancestry and may have limited generalizability across other ancestral populations. Understanding aspects of PRS that contribute to this issue and determining solutions is complicated by disease-specific genetic architecture and limited knowledge of sharing of causal variants and effect sizes across populations. Motivated by these challenges, we undertook a simulation study to assess the relationship between ancestry and the potential bias in PRS developed in European ancestry populations. Our simulations show that the magnitude of this bias increases with increasing divergence from European ancestry, and this is attributed to population differences in linkage disequilibrium and allele frequencies of European discovered variants, likely as a result of genetic drift. Importantly, we find that including into the PRS variants discovered in African ancestry individuals has the potential to achieve unbiased estimates of genetic risk across global populations and admixed individuals. We confirm our simulation findings in an analysis of HbA1c, asthma, and prostate cancer in the UK Biobank. Given the demonstrated improvement in PRS prediction accuracy, recruiting larger diverse cohorts will be crucial—and potentially even necessary—for enabling accurate and equitable genetic risk prediction across populations.


2021 ◽  
Author(s):  
Omer Weissbrod ◽  
Masahiro Kanai ◽  
Huwenbo Shi ◽  
Steven Gazal ◽  
Wouter Peyrot ◽  
...  

AbstractPolygenic risk scores (PRS) based on European training data suffer reduced accuracy in non-European target populations, exacerbating health disparities. This loss of accuracy predominantly stems from LD differences, MAF differences (including population-specific SNPs), and/or causal effect size differences. Here, we propose PolyPred, a method that improves trans-ethnic polygenic prediction by combining two complementary predictors: a new predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging effects), addressing LD differences; and BOLT-LMM, a published predictor. In the special case where a large training sample is available in the non-European target population (or a closely related population), we propose PolyPred+, which further incorporates the non-European training data, addressing MAF differences and causal effect size differences. We applied PolyPred to 49 diseases and complex traits in 4 UK Biobank populations using UK Biobank British training data (average N=325K), and observed statistically significant average relative improvements in prediction accuracy vs. BOLT-LMM ranging from +7% in South Asians to +32% in Africans (and vs. LD-pruning + P-value thresholding (P+T) ranging from +77% to +164%), consistent with simulations. We applied PolyPred+ to 23 diseases and complex traits in UK Biobank East Asians using both UK Biobank British (average N=325K) and Biobank Japan (average N=124K) training data, and observed statistically significant average relative improvements in prediction accuracy of +24% vs. BOLT-LMM and +12% vs. PolyPred. In conclusion, PolyPred and PolyPred+ improve trans-ethnic polygenic prediction accuracy, ameliorating health disparities.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 286-286
Author(s):  
Anatoliy Yashin ◽  
Dequing Wu ◽  
Konstantin Arbeev ◽  
Arseniy Yashkin ◽  
Galina Gorbunova ◽  
...  

Abstract Persistent stress of external or internal origin accelerates aging, increases risk of aging related health disorders, and shortens lifespan. Stressors activate stress response genes, and their products collectively influence traits. The variability of stressors and responses to them contribute to trait heterogeneity, which may cause the failure of clinical trials for drug candidates. The objectives of this paper are: to address the heterogeneity issue; to evaluate collective interaction effects of genetic factors on Alzheimer’s disease (AD) and longevity using HRS data; to identify differences and similarities in patterns of genetic interactions within two genders; and to compare AD related genetic interaction patterns in HRS and LOADFS data. To reach these objectives we: selected candidate genes from stress related pathways affecting AD/longevity; implemented logistic regression model with interaction term to evaluate effects of SNP-pairs on these traits for males and females; constructed the novel interaction polygenic risk scores for SNPs, which showed strong interaction potential, and evaluated effects of these scores on AD/longevity; and compared patterns of genetic interactions within the two genders and within two datasets. We found there were many genes involved in highly significant interactions that were the same and that were different within the two genders. The effects of interaction polygenic risk scores on AD were strong and highly statistically significant. These conclusions were confirmed in analyses of interaction effects on longevity trait using HRS data. Comparison of HRS to LOADFS data showed that many genes had strong interaction effects on AD in both data sets.


2021 ◽  
Author(s):  
Alexander S. Hatoum ◽  
Emma C. Johnson ◽  
David A. A. Baranger ◽  
Sarah E. Paul ◽  
Arpana Agrawal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document