Particle drift potential of glyphosate plus 2,4-D choline pre-mixture formulation in a low-speed wind tunnel

2020 ◽  
Vol 34 (4) ◽  
pp. 520-527
Author(s):  
Bruno C. Vieira ◽  
Thomas R. Butts ◽  
Andre O. Rodrigues ◽  
Jerome J. Schleier ◽  
Bradley K. Fritz ◽  
...  

AbstractThe introduction of 2,4-D–resistant soybean and cotton provided growers a new POST active ingredient to include in weed management programs. The technology raises concerns regarding potential 2,4-D off-target movement to sensitive vegetation, and spray droplet size is the primary management factor focused on to reduce spray particle drift. The objective of this study was to investigate the droplet size distribution, droplet velocity, and particle drift potential of glyphosate plus 2,4-D choline pre-mixture (Enlist Duo®) applications with two commonly used venturi nozzles in a low-speed wind tunnel. Applications with the TDXL11004 nozzle had larger DV0.1 (291 µm), DV0.5 (544 µm), and DV0.9 (825 µm) values compared with the AIXR11004 nozzle (250, 464, and 709 µm, respectively), and slower average droplet velocity (8.1 m s−1) compared with the AIXR11004 nozzle (9.1 m s−1). Nozzle type had no influence on drift deposition (P = 0.65), drift coverage (P = 0.84), and soybean biomass reduction (P = 0.76). Although the TDXL11004 nozzle had larger spray droplet size, the slower spray droplet velocity could have influenced the nozzle particle drift potential. As a result, both TDXL11004 and AIXR11004 nozzles had similar spray drift potential. Further studies are necessary to understand the impact of droplet velocity on drift potential at field scale and test how different tank solutions, sprayer configurations, and environmental conditions could influence the droplet size and velocity dynamics and consequent drift potential in pesticide applications.

Author(s):  
Joshua A. McGinty ◽  
Gaylon D. Morgan ◽  
Peter A. Dotray ◽  
Paul A. Baumann

Aims: Determine the droplet size spectra of agricultural sprays as affected by herbicide formulations, spray nozzle designs, and operating pressures. Place and Duration of Study: This study was conducted in April 2014 at the United States Department of Agriculture Agricultural Research Service Aerial Application Technology Research Unit Facility in College Station, Texas. Methodology: The spray droplet size spectra of six herbicide formulations as well as water alone and water with nonionic surfactant were evaluated in a low-speed wind tunnel. These spray solutions were conducted with five different flat-fan spray nozzle designs, producing a wide range of spray droplet sizes. The wind tunnel was equipped with a laser diffraction sensor to analyze spray droplet size. All combinations of spray solution and nozzle were operated at 207 and 414 kPa and replicated three times. Results: Many differences in droplet size spectra were detected among the spray solutions, nozzle designs, and pressures tested. Solutions of Liberty 280 SL exhibited the smallest median droplet size and the greatest proportion of spray volume contained in droplets 100 µm or less in size.  Solutions of Enlist Duo resulted in smaller median droplet size than many of the solutions tested, but also exhibited some of the smallest production of fine spray droplets. Median droplet size was found to vary greatly among nozzle designs, with the greatest droplet size and smallest drift-prone fine droplet production observed with air-inclusion designs utilizing a pre-orifice. Increasing the operating pressure from 207 to 414 kPa resulted in a decrease in median droplet size and an increase in the production of droplets 100 µm or less in size. Conclusion: Herbicide formulations and spray nozzle designs tested varied widely in droplet size spectra and thus the potential for spray drift. Increasing operating pressure resulted in decreased droplet size and an increase in the production of drift-prone droplets. Additionally, median droplet size alone should not be used to compare spray drift potential among spray solutions but should include relative span and V100 values to better predict the potential for spray drift due to drift-prone spray droplets.


2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Lance W. Traub

A low-speed wind tunnel investigation is presented characterizing the impact of Gurney flaps on an elliptical airfoil. The chordwise attachment location and height of the flaps were varied, as was the Reynolds number. The results showed strong nonlinearities in the lift curve which were present for all tested geometries. Flap effectiveness was seen to diminish as the flap was moved closer to the trailing edge stemming from flap submersion in separated flow. For the tested cases, the measured lift coefficients showed a weak Re dependency. The upper airfoil surface was shown to carry approximately 80% of the total lift load. The top surface caused a pitching moment reversal associated with nonlinearity in the lift curve.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 278
Author(s):  
Chase Allen Samples ◽  
Thomas R. Butts ◽  
Bruno C. Vieira ◽  
Jon Trenton Irby ◽  
Daniel B. Reynolds ◽  
...  

The adoption of auxin-tolerant crops has increased awareness regarding herbicide off-target movement. Deposition aids are promoted as a possible solution to off-target movement, although their effect on spray canopy deposition are not well understood. Studies were conducted to determine the impact of deposition aids tank-mixed with herbicides on spray droplet size and canopy deposition. Commonly used herbicides were applied on soybean and cotton in combination with deposition aids (oil, polymer, and guargum). Interactions between herbicide solution and deposition aid influenced droplet size parameters for both cotton and soybean herbicides tested herein (p ≤ 0.0001). Generally, the addition of polymer and guargum deposition aids increased spray droplet size, whereas the addition of oil deposition aid decreased droplet size for some treatments. When herbicides were combined, the inclusion of deposition aids did not influence overall spray deposition on cotton (p = 0.82) and soybean (p = 0.72). When herbicide solutions were evaluated individually, the advent of deposition aids had inconsistent results with cotton and soybean spray deposition being unaffected, increased, or even decreased depending on the herbicide solution tested. For example, the polymer-based deposition aid increased spray deposition on cotton for applications of glyphosate + dicamba + S-metolachlor resulting in 1640.6 RFU (relative fluorescence units). However, the same deposition aid decreased spray deposition on cotton for applications of glyphosate + dicamba + acetochlor (1179.3 RFU). Although deposition aids influenced spray deposition on cotton and soybean for some herbicide combinations, their use should be determined on a case-by-case scenario.


Author(s):  
Odenir de Almeida ◽  
FREDERICO CARNEVALLI DE MIRANDA ◽  
Olivio Neto ◽  
Fernanda Guimarães Saad

1983 ◽  
Vol 1983 (17) ◽  
pp. 41-50
Author(s):  
Kazushi OGAWA ◽  
Yoshinori SAKAI ◽  
Kazutoshi MATSUDA

Sign in / Sign up

Export Citation Format

Share Document