Acquisition of Mid-Infrared Spectra from Nonrepeatable Events with Sub-100-μs Temporal Resolution Using Planar Array Infrared Spectroscopy

2004 ◽  
Vol 76 (7) ◽  
pp. 1811-1816 ◽  
Author(s):  
Christopher M. Snively ◽  
Christian Pellerin ◽  
John F. Rabolt ◽  
D. Bruce Chase
2020 ◽  
Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

<p>Particulate matter (PM) affects visibility and climate through light scattering, direct and indirect radiative forcing, and affecting cloud formation [1]. In addition, exposure to ambient fine PM is estimated to have caused 8.9 million deaths worldwide in 2015 [2]. Organic matter (OM), can make up more than half of total fine atmospheric PM, and yet its composition, formation mechanisms, and adverse health effects are not fully characterized due to its sheer compositional complexity. Biomass burning (e.g., residential wood burning, wildfires, and prescribed burning) and coal combustion (for heat and power generation) are two major OM sources, for which the impact of atmospheric aging - including secondary organic aerosol (SOA) formation - is not yet fully clear [3].</p><p>In this study, we investigated the effect of aging on composition and mass concentration of organic aerosols of wood burning (WB) and coal combustion (CC) emissions using two complementary methods, i.e., mid-infrared spectroscopy and aerosol mass spectrometry (AMS). For this purpose, primary aerosols were injected into the Paul Scherrer Institute (PSI) environmental chamber and aged using hydroxyl and nitrate radicals to simulate day-time and night-time oxidation processes in the atmosphere. In these experiments, aerosols reached an oxidative age comparable to that of atmospheric aerosols. A time-of-flight AMS instrument was used to measure the high-time-resolution composition of non-refractory fine PM, while we collected PM<sub>1 </sub>aerosols on PTFE filters before and after four hours of aging for off-line Fourier transform-infrared spectroscopy (FT-IR) measurements.</p><p>AMS and FT-IR estimates of organic aerosol mass concentration were highly correlated (r<sup>2</sup>=0.92); both indicating an approximately three-fold increase in organic aerosol concentration after aging. The OM/OC ratio, indicating the extent of oxidation also agreed closely between the two instruments and increased, on average, from 1.6 (before aging) to 2 (after aging). Mid-infrared spectroscopy, which is able to differentiate among oxygenated species, shows a distinct functional group composition for aged WB aerosols (high abundance of carboxylic acids) and CC aerosols (high abundance of non-acid carbonyls) and detects considerable amounts polycyclic aromatic hydrocarbons (PAHs) for both sources. Mid-infrared spectra of fresh WB and CC aerosols are reminiscent of their parent compounds with differences in specific functional groups suggesting the dominant oxidation pathways for each emission source. Finally, the comparison of mid-infrared spectra of aged WB aerosols in the environmental chamber with that of ambient samples affected by residential wood burning and wildfires reveals interesting similarities regarding the high abundance of alcohols and visible signatures of lignin. This finding is useful for interpreting sources of atmospheric aerosols and better interpretation of their complex mid-infrared spectra.</p><p>--------------------------</p><p>REFERENCES</p><p>[1] M. Hallquist et al., “The formation, properties and impact of secondary organic aerosol: current and emerging issues,” Atmos Chem Phys, 2009.</p><p>[2] R. Burnett et al., “Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter,” Proc. Natl. Acad. Sci., 2018.</p><p>[3] A. Bertrand et al., “Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency,” Atmos. Environ., 2017.</p>


2021 ◽  
Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

Abstract. Aerosol mass spectrometry (AMS) and mid-infrared spectroscopy (MIR) are two analytical methods for characterizing the chemical composition of OM. While AMS provides high-temporal-resolution bulk measurements, the extensive fragmentation during the electron impact (EI) ionization makes the characterization of OM components limited. The analysis of aerosols collected on PTFE filters using MIR, on the other hand, provides functional group (FG) information with reduced sample alteration but results in a relatively low temporal resolution. In this work, we compared and combined MIR and AMS measurements for several environmental chamber experiments to achieve a better understanding of the AMS spectra and the OM chemical evolution by aging. Fresh emissions of wood and coal burning were injected into an environmental simulation chamber and aged with hydroxyl and nitrate radicals. A high-resolution time-of-flight (HR-TOF) AMS measured the bulk chemical composition of fine PM. Fine aerosols were also sampled on PTFE filters before and after aging for the offline MIR analysis. After comparing AMS and MIR bulk measurements, we used multivariate statistics to identify the influential functional groups contributing to AMS OM mass for different aerosol sources and aging processes. We also identified the key mass fragments resulting from each functional group for the complex OM generated from biomass and fossil fuel combustion. Finally, we developed a statistical model that enables estimation of the high-time-resolution functional group composition of OM using collocated AMS and MIR measurements. Using this approach, AMS spectra can be used to interpolate the functional group measurements by MIR, allowing us to better understand the evolution of OM during the aging process.


Clay Minerals ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 739-751 ◽  
Author(s):  
J. Madejová ◽  
J. Bujdák ◽  
S. Petit ◽  
P. Komadel

AbstractInfrared spectroscopy in the mid-IR region was used to follow the structural changes occurring in five Li-saturated dioctahedral smectites upon heating. The smectites included three montmorillonites, an Fe-beidellite and a ferruginous smectite. Fixation of Li+ ions in the structure even upon heating at 120°C caused the appearance of an AlMgLiOH-stretching band near 3670 cm–1 in the spectra of all three montmorillonites. This band confirmed the presence of Li(I) in the previously vacant octahedral positions in montmorillonites. No similar band was observed in the spectra of ferruginous heated smectites with prevailing tetrahedral charge. A gradual upward frequency shift and decrease in intensity of the AlAlOH-bending band showed that Li(I) present in the hexagonal cavities causes pronouncedperturbation of this OH-bending mode. The Li(I) present in the octahedral sheets causes small perturbations of the OH-bending mode near 850 cm–1 and activation of a new OH-bending mode near 803 cm–1. Reversible changes in the positions of the stretching Si–O and bending OH bands in the spectra of Fe-beidellite and a ferruginous smectite proved that Li was present in these minerals primarily in the hexagonal holes of the tetrahedral sheets.


2011 ◽  
Vol 28 (1) ◽  
pp. 33-48 ◽  
Author(s):  
Oto Hanuš ◽  
Václava Genčurová ◽  
Yunhai Zhang ◽  
Pavel Hering ◽  
Jaroslav Kopecký ◽  
...  

Milk acetone determination by the photometrical method after microdiffusion and via FT infra-red spectroscopyMilk acetone (AC) and betahydroxybutyrate (BHB) are important indicators of the energy metabolism of cows (ketosis occurrence) and an effective method for their determination, with reliable results, is of great importance. The goal of this work was to investigate the infrared method MIR-FT in terms of its calibration for milk AC and to develop a usable procedure. The microdiffusion photometric (485 nm; Spekol 11) method was used with salicylaldehyde as a reference (Re) and mid infrared spectroscopy FT (MIR-FT: Lactoscope FT-IR, Delta; MilkoScan FT 6000, M-Sc) as an indirect method. The acetone addition to milk had no recovery using MIR-FT (Delta). The reference AC set must have acceptable statistics for good MIR-FT calibration (M-Sc) and they were: 10.1 ± 9.74 at a geometric mean of 7.26 mg l-1, and a variation range from 1.98 to 33.66 mg l-1. The AC correlation between Re and MIR-FT (Delta) was low at 0.32 (P>0.05 but the Log AC relationship between Re and MIR-FT (M-Sc) was markedly better at 0.80 (P<0.01). The conversion of >10 mg l-1 as an AC subclinical ketosis limit could be > -0.80 (feedback 0.158 mmol l-1 = 9.25 mg l-1) and > -1.66. This could be important for ketosis monitoring (using M-Sc).


2021 ◽  
Vol 164 ◽  
pp. 106029
Author(s):  
Diego Maciel Gerônimo ◽  
Sheila Catarina de Oliveira ◽  
Frederico Luis Felipe Soares ◽  
Patricio Peralta-Zamora ◽  
Noemi Nagata

Icarus ◽  
2021 ◽  
Vol 365 ◽  
pp. 114492
Author(s):  
Noah Jäggi ◽  
André Galli ◽  
Peter Wurz ◽  
Herbert Biber ◽  
Paul Stefan Szabo ◽  
...  

2021 ◽  
Vol 162 ◽  
pp. 103894
Author(s):  
Thao Pham ◽  
Cornelia Rumpel ◽  
Yvan Capowiez ◽  
Pascal Jouquet ◽  
Céline Pelosi ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jordi Ortuño ◽  
Sokratis Stergiadis ◽  
Anastasios Koidis ◽  
Jo Smith ◽  
Chris Humphrey ◽  
...  

Abstract Background The presence of condensed tannins (CT) in tree fodders entails a series of productive, health and ecological benefits for ruminant nutrition. Current wet analytical methods employed for full CT characterisation are time and resource-consuming, thus limiting its applicability for silvopastoral systems. The development of quick, safe and robust analytical techniques to monitor CT’s full profile is crucial to suitably understand CT variability and biological activity, which would help to develop efficient evidence-based decision-making to maximise CT-derived benefits. The present study investigates the suitability of Fourier-transformed mid-infrared spectroscopy (MIR: 4000–550 cm−1) combined with multivariate analysis to determine CT concentration and structure (mean degree of polymerization—mDP, procyanidins:prodelphidins ratio—PC:PD and cis:trans ratio) in oak, field maple and goat willow foliage, using HCl:Butanol:Acetone:Iron (HBAI) and thiolysis-HPLC as reference methods. Results The MIR spectra obtained were explored firstly using Principal Component Analysis, whereas multivariate calibration models were developed based on partial least-squares regression. MIR showed an excellent prediction capacity for the determination of PC:PD [coefficient of determination for prediction (R2P) = 0.96; ratio of prediction to deviation (RPD) = 5.26, range error ratio (RER) = 14.1] and cis:trans ratio (R2P = 0.95; RPD = 4.24; RER = 13.3); modest for CT quantification (HBAI: R2P = 0.92; RPD = 3.71; RER = 13.1; Thiolysis: R2P = 0.88; RPD = 2.80; RER = 11.5); and weak for mDP (R2P = 0.66; RPD = 1.86; RER = 7.16). Conclusions MIR combined with chemometrics allowed to characterize the full CT profile of tree foliage rapidly, which would help to assess better plant ecology variability and to improve the nutritional management of ruminant livestock.


Sign in / Sign up

Export Citation Format

Share Document