Organic functional group composition of particulate matter from fresh and aged wood burning and coal combustion

Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

<p>Particulate matter (PM) affects visibility and climate through light scattering, direct and indirect radiative forcing, and affecting cloud formation [1]. In addition, exposure to ambient fine PM is estimated to have caused 8.9 million deaths worldwide in 2015 [2]. Organic matter (OM), can make up more than half of total fine atmospheric PM, and yet its composition, formation mechanisms, and adverse health effects are not fully characterized due to its sheer compositional complexity. Biomass burning (e.g., residential wood burning, wildfires, and prescribed burning) and coal combustion (for heat and power generation) are two major OM sources, for which the impact of atmospheric aging - including secondary organic aerosol (SOA) formation - is not yet fully clear [3].</p><p>In this study, we investigated the effect of aging on composition and mass concentration of organic aerosols of wood burning (WB) and coal combustion (CC) emissions using two complementary methods, i.e., mid-infrared spectroscopy and aerosol mass spectrometry (AMS). For this purpose, primary aerosols were injected into the Paul Scherrer Institute (PSI) environmental chamber and aged using hydroxyl and nitrate radicals to simulate day-time and night-time oxidation processes in the atmosphere. In these experiments, aerosols reached an oxidative age comparable to that of atmospheric aerosols. A time-of-flight AMS instrument was used to measure the high-time-resolution composition of non-refractory fine PM, while we collected PM<sub>1 </sub>aerosols on PTFE filters before and after four hours of aging for off-line Fourier transform-infrared spectroscopy (FT-IR) measurements.</p><p>AMS and FT-IR estimates of organic aerosol mass concentration were highly correlated (r<sup>2</sup>=0.92); both indicating an approximately three-fold increase in organic aerosol concentration after aging. The OM/OC ratio, indicating the extent of oxidation also agreed closely between the two instruments and increased, on average, from 1.6 (before aging) to 2 (after aging). Mid-infrared spectroscopy, which is able to differentiate among oxygenated species, shows a distinct functional group composition for aged WB aerosols (high abundance of carboxylic acids) and CC aerosols (high abundance of non-acid carbonyls) and detects considerable amounts polycyclic aromatic hydrocarbons (PAHs) for both sources. Mid-infrared spectra of fresh WB and CC aerosols are reminiscent of their parent compounds with differences in specific functional groups suggesting the dominant oxidation pathways for each emission source. Finally, the comparison of mid-infrared spectra of aged WB aerosols in the environmental chamber with that of ambient samples affected by residential wood burning and wildfires reveals interesting similarities regarding the high abundance of alcohols and visible signatures of lignin. This finding is useful for interpreting sources of atmospheric aerosols and better interpretation of their complex mid-infrared spectra.</p><p>--------------------------</p><p>REFERENCES</p><p>[1] M. Hallquist et al., “The formation, properties and impact of secondary organic aerosol: current and emerging issues,” Atmos Chem Phys, 2009.</p><p>[2] R. Burnett et al., “Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter,” Proc. Natl. Acad. Sci., 2018.</p><p>[3] A. Bertrand et al., “Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency,” Atmos. Environ., 2017.</p>

2020 ◽  
Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

Abstract. Particulate matter (PM) affects visibility, climate, and public health. Organic matter (OM), a uniquely complex portion of PM, can make up more than half of total atmospheric fine PM. We investigated the effect of aging on secondary organic aerosol (SOA) concentration and composition for wood burning (WB) and coal combustion (CC) emissions, two major atmospheric OM sources, using mid-infrared (MIR) spectroscopy and aerosol mass spectrometry (AMS). For this purpose, primary aerosols were injected into an environmental chamber and aged using hydroxyl (diurnal aging) and nitrate (nocturnal aging) radicals to reach an atmospherically-relevant oxidative age. A time-of-flight AMS instrument was used to measure high-time-resolution composition of non-refractory fine PM, while fine PM was collected on PTFE filters before and after aging for MIR analysis. AMS and MIR spectroscopy indicate an approximately three-fold enhancement of organic aerosol (OA) concentration after aging (not wall-loss corrected). The OM : OC ratios also agree closely between the two methods and increase, on average, from 1.6, before aging, to 2, during the course of aging. MIR spectroscopy, which is able to differentiate among oxygenated groups, shows a distinct functional group composition for aged WB (high abundance of carboxylic acids) and CC OA (high abundance of non-acid carbonyls) and detects aromatics and polycyclic aromatic hydrocarbons (PAHs) in emissions of both sources. The MIR spectra of fresh WB and CC aerosols are reminiscent of their parent compounds with differences in specific oxygenated functional groups after aging, consistent with expected oxidation pathways for volatile organic compounds (VOCs) of each emission source. The AMS mass spectra also show variations with source and aging that are consistent the MIR functional group (FG) analysis. Finally, comparison of the MIR spectra of chamber WB OA with that of ambient samples affected by residential wood burning and wildfires reveals similarities regarding the high abundance of organics, especially acids, and visible signatures of lignin and levoglucosan. This finding is beneficial to source identification of atmospheric aerosols and interpretation of their complex MIR spectra.


2021 ◽  
Vol 21 (13) ◽  
pp. 10273-10293
Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

Abstract. Particulate matter (PM) affects visibility, climate, and public health. Organic matter (OM), a uniquely complex portion of PM, can make up more than half of total atmospheric fine PM mass. We investigated the effect of aging on secondary organic aerosol (SOA) concentration and composition for wood burning (WB) and coal combustion (CC) emissions, two major atmospheric OM sources, using mid-infrared (MIR) spectroscopy and aerosol mass spectrometry (AMS). For this purpose, primary emissions were injected into an environmental chamber and aged using hydroxyl (diurnal aging) and nitrate (nocturnal aging) radicals to reach an atmospherically relevant oxidative age. A time-of-flight AMS instrument was used to measure the high-time-resolution composition of non-refractory fine PM, while fine PM was collected on PTFE filters before and after aging for MIR analysis. AMS and MIR spectroscopy indicate an approximately 3-fold enhancement of organic aerosol (OA) concentration after aging (not wall-loss corrected). The OM:OC ratios also agree closely between the two methods and increase, on average, from 1.6 before aging to 2 during the course of aging. MIR spectroscopy, which is able to differentiate among oxygenated groups, shows a distinct functional group composition for aged WB (high abundance of carboxylic acids) and CC OA (high abundance of non-acid carbonyls) and detects aromatics and polycyclic aromatic hydrocarbons (PAHs) in emissions of both sources. The MIR spectra of fresh WB and CC aerosols are reminiscent of their parent compounds with differences in specific oxygenated functional groups after aging, consistent with expected oxidation pathways for volatile organic compounds (VOCs) of each emission source. The AMS mass spectra also show variations due to source and aging that are consistent with the MIR functional group (FG) analysis. Finally, a comparison of the MIR spectra of aged chamber WB OA with that of ambient samples affected by residential wood burning and wildfires reveals similarities regarding the high abundance of organics, especially acids, and the visible signatures of lignin and levoglucosan. This finding is beneficial for the source identification of atmospheric aerosols and interpretation of their complex MIR spectra.


2017 ◽  
Author(s):  
Carlo Bozzetti ◽  
Imad El Haddad ◽  
Dalia Salameh ◽  
Kaspar Rudolf Daellenbach ◽  
Paola Fermo ◽  
...  

Abstract. We investigated the seasonal trends of OA sources affecting the air quality of Marseille (France) which is the largest harbor of the Mediterranean Sea. This was achieved by measurements of nebulized filter extracts using an aerosol mass spectrometer (offline-AMS). PM2.5 (particulate matter with an aerodynamic diameter


2016 ◽  
Vol 16 (3) ◽  
pp. 1245-1254 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


2015 ◽  
Vol 15 (20) ◽  
pp. 28289-28316 ◽  
Author(s):  
T. P. Riedel ◽  
Y.-H. Lin ◽  
Z. Zhang ◽  
K. Chu ◽  
J. A. Thornton ◽  
...  

Abstract. Isomeric epoxydiols from isoprene photooxidation (IEPOX) have been shown to produce substantial amounts of secondary organic aerosol (SOA) mass and are therefore considered a major isoprene-derived SOA precursor. Heterogeneous reactions of IEPOX on atmospheric aerosols form various aerosol-phase components or "tracers" that contribute to the SOA mass burden. A limited number of the reaction rate constants for these acid-catalyzed aqueous-phase tracer formation reactions have been constrained through bulk laboratory measurements. We have designed a chemical box model with multiple experimental constraints to explicitly simulate gas- and aqueous-phase reactions during chamber experiments of SOA growth from IEPOX uptake onto acidic sulfate aerosol. The model is constrained by measurements of the IEPOX reactive uptake coefficient, IEPOX and aerosol chamber wall-losses, chamber-measured aerosol mass and surface area concentrations, aerosol thermodynamic model calculations, and offline filter-based measurements of SOA tracers. By requiring the model output to match the SOA growth and offline filter measurements collected during the chamber experiments, we derive estimates of the tracer formation reaction rate constants that have not yet been measured or estimated for bulk solutions.


Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 666 ◽  
Author(s):  
William G. Tsui ◽  
Joseph L. Woo ◽  
V. Faye McNeill

Chemical processing of organic material in aqueous atmospheric aerosols and cloudwater is known to form secondary organic aerosols (SOA), although the extent to which each of these processes contributes to total aerosol mass is unclear. In this study, we use GAMMA 5.0, a photochemical box model with coupled gas and aqueous-phase chemistry, to consider the impact of aqueous organic reactions in both aqueous aerosols and clouds on isoprene epoxydiol (IEPOX) SOA over a range of pH for both aqueous phases, including cycling between cloud and aerosol within a single simulation. Low pH aqueous aerosol, in the absence of organic coatings or other morphology which may limit uptake of IEPOX, is found to be an efficient source of IEPOX SOA, consistent with previous work. Cloudwater at pH 4 or lower is also found to be a potentially significant source of IEPOX SOA. This phenomenon is primarily attributed to the relatively high uptake of IEPOX to clouds as a result of higher water content in clouds as compared with aerosol. For more acidic cloudwater, the aqueous organic material is comprised primarily of IEPOX SOA and lower-volatility organic acids. Both cloudwater pH and the time of day or sequence of aerosol-to-cloud or cloud-to-aerosol transitions impacted final aqueous SOA mass and composition in the simulations. The potential significance of cloud processing as a contributor to IEPOX SOA production could account for discrepancies between predicted IEPOX SOA mass from atmospheric models and measured ambient IEPOX SOA mass, or observations of IEPOX SOA in locations where mass transfer limitations are expected in aerosol particles.


2004 ◽  
Vol 76 (7) ◽  
pp. 1811-1816 ◽  
Author(s):  
Christopher M. Snively ◽  
Christian Pellerin ◽  
John F. Rabolt ◽  
D. Bruce Chase

2011 ◽  
Vol 11 (12) ◽  
pp. 5945-5957 ◽  
Author(s):  
M. F. Heringa ◽  
P. F. DeCarlo ◽  
R. Chirico ◽  
T. Tritscher ◽  
J. Dommen ◽  
...  

Abstract. A series of photo-oxidation smog chamber experiments were performed to investigate the primary emissions and secondary aerosol formation from two different log wood burners and a residential pellet burner under different burning conditions: starting and flaming phase. Emissions were sampled from the chimney and injected into the smog chamber leading to primary organic aerosol (POA) concentrations comparable to ambient levels. The composition of the aerosol was measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and black carbon (BC) instrumentation. The primary emissions were then exposed to xenon light to initiate photo-chemistry and subsequent secondary organic aerosol (SOA) production. After correcting for wall losses, the average increase in organic matter (OM) concentrations by SOA formation for the starting and flaming phase experiments with the two log wood burners was found to be a factor of 4.1±1.4 after five hours of aging. No SOA formation was observed for the stable burning phase of the pellet burner. The startup emissions of the pellet burner showed an increase in OM concentration by a factor of 3.3. Including the measured SOA formation potential, average emission factors of BC+POA+SOA, calculated from CO2 emission, were found to be in the range of 0.04 to 3.9 g/kg wood for the stable burning pellet burner and an old log wood burner during startup respectively. SOA contributed significantly to the ion C2H4O2+ at mass to charge ratio m/z 60, a commonly used marker for primary emissions of wood burning. This contribution at m/z 60 can overcompensate for the degradation of levoglucosan leading to an overestimation of the contribution of wood burning or biomass burning to the total OM. The primary organic emissions from the three different burners showed a wide range in O:C atomic ratio (0.19−0.60) for the starting and flaming conditions, which also increased during aging. Primary wood burning emissions have a rather low relative contribution at m/z 43 (f 43) to the total organic mass spectrum. The non-oxidized fragment C3H7+ has a considerable contribution at m/z 43 for the fresh OA with an increasing contribution of the oxygenated ion C2H3O+ during aging. After five hours of aging, the OA has a rather low C2H3O+ signal for a given CO2+ fraction, possibly indicating a higher ratio of acid to non-acid oxygenated compounds in wood burning OA compared to other oxygenated organic aerosol (OOA).


2016 ◽  
Author(s):  
Kalliopi Florou ◽  
Dimitrios K. Papanastasiou ◽  
Michael Pikridas ◽  
Christos Kaltsonoudis ◽  
Evangelos Louvaris ◽  
...  

Abstract. The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns conducted in 2013 and 2012, respectively. A major goal of this study is to quantify the sources of organic aerosol (OA) and especially residential wood burning, which has dramatically increased due to the Greek financial crisis. A high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in both sites. PM with diameter less than 1 μm (PM1) consisted mainly of organics (60–75 %), black carbon (5–20 %) and inorganic salts (around 20 %) in both Patras and Athens. In Patras, during evening hours, PM1 concentrations were as high as 100 μg m–, of which 85 % were OA. In Athens, the maximum hourly value observed during nighttime was 140 μg m−3, of which 120 μg m−3 was OA. 40–60 % of the average OA was due to biomass burning for both cities, while the remaining mass originated from traffic (12–17 %), cooking (12–16 %) and long-range transport (18–24%). The contribution of residential wood burning was even higher (80–90 %) during the nighttime peak concentration periods, and less than 10 % during daytime. Cooking OA contributed up to 75 % during mealtime hours in Patras, while traffic-related OA was responsible for 60–70 % of the OA during the morning rush hour.


2020 ◽  
Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Ying Li ◽  
Zhiqiang Zhang ◽  
...  

Abstract. Volatility and viscosity have substantial impacts on gas-particle partitioning, formation and evolution of aerosol, and hence the predictions of aerosol related air quality and climate effects. Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in North China Plain (NCP) in summer and winter were investigated by using a thermodenuder coupled with high resolution aerosol mass spectrometer. The effective saturation concentration (C*) of organic aerosol (OA) in summer was smaller than that in winter (0.55 μg m−3 vs. 0.71–0.75 μg m−3), indicating that OA in winter in NCP is more volatile due to enhanced primary emissions from coal combustion and biomass burning. The volatility distributions varied largely different among different OA factors. In particular, we found that hydrocarbon-like OA (HOA) contained more non-volatile compounds compared to coal combustion related OA. The more oxidized oxygenated OA (MO-OOA) showed overall lower volatility than less oxidized OOA (LO-OOA) in both summer and winter, yet the volatility of MO-OOA was found to be relative humidity (RH) dependent showing more volatile properties at higher RH. Our results demonstrated the different composition and chemical formation pathways of MO-OOA under different RH levels. The glass transition temperature (Tg) and viscosity of OA in summer and winter are estimated using the recently developed parameterization formula. Our results showed that the Tg of OA in summer in Beijing (291.5 K) was higher than that in winter (289.7–290.0 K), while it varied greatly among different OA factors. The viscosity suggested that OA existed mainly as solid in winter in Beijing, but as semi-solids in Beijing in summer and Gucheng in winter. These results have important implications that kinetically limited gas-particle partitioning may need to be considered when simulating secondary OA formation in NCP.


Sign in / Sign up

Export Citation Format

Share Document