Lattice-Boltzmann Simulations of Three-Dimensional Fluid Flow on a Desktop Computer

2007 ◽  
Vol 79 (7) ◽  
pp. 2965-2971 ◽  
Author(s):  
Jeffrey D. Brewster
Author(s):  
Eric J. Guiltinan ◽  
J. E. Santos ◽  
M. Bayani Cardenas ◽  
D. Nicolas Espinoza ◽  
Qinjun Kang

2007 ◽  
Vol 129 (3) ◽  
pp. 603-610 ◽  
Author(s):  
Gunther Brenner ◽  
Ahmad Al-Zoubi ◽  
Merim Mukinovic ◽  
Hubert Schwarze ◽  
Stefan Swoboda

The effect of surface texture and roughness on shear and pressure forces in tribological applications in the lubrication regime is analyzed by means of lattice-Boltzmann simulations that take the geometry of real surface elements into account. Topographic data on representative surface structures are obtained with high spatial resolution with the application of an optical interference technique. The three-dimensional velocity field past these surfaces is computed for laminar flow of Newtonian fluids in the continuum regime. Subsequently, pressure and shear flow factors are obtained by evaluating the velocity field in accordance with the extended Reynolds equation of Patir and Cheng (1978, ASME J. Tribol., 100, pp. 12–17). The approach allows an efficient determination of the hydrodynamic characteristics of microstructured surfaces in lubrication. Especially, the influence of anisotropy of surface texture on the hydrodynamic load capacity and friction is determined. The numerical method used in the present work is verified for a simplified model configuration, the flow past a channel with sinusoidal walls. The results obtained indicate that full numerical simulations should be used to accurately and efficiently compute the characteristic properties of film flows past rough surfaces and may therefore contribute to a better understanding and prediction of tribological problems.


2005 ◽  
Vol 16 (01) ◽  
pp. 25-44 ◽  
Author(s):  
KANNAN N. PREMNATH ◽  
JOHN ABRAHAM

In this paper, three-dimensional computations of drop–drop interactions using the lattice Boltzmann method (LBM) are reported. The LBM multiphase flow model employed is evaluated for single drop problems and binary drop interactions. These include the verification of Laplace–Young relation for static drops, drop oscillations, and drop deformation and breakup in simple shear flow. The results are compared with experimental data, analytical solutions and numerical solutions based on other computational methods, as applicable. Satisfactory agreement is shown. Initial studies of drop–drop interactions involving the head-on collisions of drops in quiescent medium and off-center collision of drops in the presence of ambient shear flow are considered. As expected, coalescence outcome is observed for the range of parameters studied.


1999 ◽  
Vol 385 ◽  
pp. 41-62 ◽  
Author(s):  
DEWEI QI

A lattice-Boltzmann method has been developed to simulate suspensions of both spherical and non-spherical particles in finite-Reynolds-number flows. The results for sedimentation of a single elliptical particle are shown to be in excellent agreement with the results of Huang, Hu & Joseph (1998) who used a finite-element method. Sedimentation of two-dimensional circular and rectangular particles in a two-dimensional channel and three-dimensional spherical particles in a tube with square cross-section is simulated. Computational results are consistent with experimentally observed phenomena, such as drafting, kissing and tumbling.


Sign in / Sign up

Export Citation Format

Share Document