scholarly journals Isothermal Discrimination of Single-Nucleotide Polymorphisms via Real-Time Kinetic Desorption and Label-Free Detection of DNA Using Silicon Photonic Microring Resonator Arrays

2011 ◽  
Vol 83 (17) ◽  
pp. 6827-6833 ◽  
Author(s):  
Abraham J. Qavi ◽  
Thomas M. Mysz ◽  
Ryan C. Bailey
2003 ◽  
Vol 49 (10) ◽  
pp. 1599-1607 ◽  
Author(s):  
Sha-Sha Wang ◽  
Keith Thornton ◽  
Andrew M Kuhn ◽  
James G Nadeau ◽  
Tobin J Hellyer

Abstract Background: The BD ProbeTec™ ET System is based on isothermal strand displacement amplification (SDA) of target nucleic acid coupled with homogeneous real-time detection using fluorescent probes. We have developed a novel, rapid method using this platform that incorporates a universal detection format for identification of single-nucleotide polymorphisms (SNPs) and other genotypic variations. Method: The system uses a common pair of fluorescent Detector Probes in conjunction with unlabeled allele-specific Adapter Primers and a universal buffer chemistry to permit analysis of multiple SNP loci under generic assay conditions. We used Detector Probes labeled with different dyes to facilitate differentiation of two alternative alleles in a single reaction with no postamplification manipulation. We analyzed six SNPs within the human β2-adrenergic receptor (β2AR) gene, using whole blood, buccal swabs, and urine samples, and compared results with those obtained by DNA sequencing. Results: Unprocessed whole blood was successfully genotyped with as little as 0.1–1 μL of sample per reaction. All six β2AR assays were able to accommodate ≥20 μL of unprocessed whole blood. For the 14 individuals tested, genotypes determined with the six β2AR assays agreed with DNA sequencing results. Conclusion: SDA-based allelic differentiation on the BD ProbeTec ET System can detect SNPs rapidly, using whole blood, buccal swabs, or urine.


2008 ◽  
Vol 54 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Weston C Hymas ◽  
Wade K Aldous ◽  
Edward W Taggart ◽  
Jeffery B Stevenson ◽  
David R Hillyard

Abstract Background: Enteroviruses are a leading cause of aseptic meningitis in adult and pediatric populations. We describe the development of a real-time RT-PCR assay that amplifies a small target in the 5′ nontranslated region upstream of the classical Rotbart enterovirus amplicon. The assay includes an RNA internal control and incorporates modified nucleotide chemistry. Methods: We evaluated the performance characteristics of this design and performed blinded parallel testing on clinical samples, comparing the results with a commercially available RT-PCR assay (Pan-Enterovirus OligoDetect kit) that uses an enzyme immunoassay–like plate end detection. Results: We tested 778 samples and found 14 discrepant samples between the 2 assays. Of these, the real-time assay detected 6 samples that were negative by the OligoDetect kit, 5 of which were confirmed as positive by sequence analysis using an alternative primer set. Eight discrepant samples were positive by the OligoDetect kit and real-time negative, with 6 confirmed by sequencing. Overall, detection rates of 97% and 96% were obtained for the OligoDetect kit and real-time assays, respectively. Sequence analysis revealed the presence of a number of single nucleotide polymorphisms in the targeted region. The comparative sensitivities of the 2 assays were equivalent, with the limit of detection for the real-time assay determined to be approximately 430 copies per milliliter in cerebrospinal fluid. Conclusions: This novel real-time enterovirus assay is a sensitive and suitable assay for routine clinical testing. The presence of single nucleotide polymorphisms can affect real-time PCR assays.


2005 ◽  
Vol 132 (3) ◽  
pp. 200-204 ◽  
Author(s):  
Tamara Čačev ◽  
Mladen Jokić ◽  
Radan Spaventi ◽  
Krešimir Pavelić ◽  
Sanja Kapitanović

Sign in / Sign up

Export Citation Format

Share Document