Inert Metal-Modified, Composite Ceramic−Carbon, Amperometric Biosensors:  Renewable, Controlled Reactive Layer

1996 ◽  
Vol 68 (13) ◽  
pp. 2015-2021 ◽  
Author(s):  
S. Sampath ◽  
O. Lev
2003 ◽  
Vol 8 (1) ◽  
pp. 3-18 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas ◽  
J. Kulys

A mathematical model of amperometric biosensors has been developed to simulate the biosensor response in stirred as well as non stirred solution. The model involves three regions: the enzyme layer where enzyme reaction as well as mass transport by diffusion takes place, a diffusion limiting region where only the diffusion takes place, and a convective region, where the analyte concentration is maintained constant. Using computer simulation the influence of the thickness of the enzyme layer as well the diffusion one on the biosensor response was investigated. The computer simulation was carried out using the finite difference technique.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 609
Author(s):  
Guangjie Feng ◽  
Manqin Liu ◽  
Yalei Liu ◽  
Zhouxin Jin ◽  
Yifeng Wang ◽  
...  

The wetting of Ag-5 wt.% CuO (Ag-5CuO) alloy on initial/CuO-coated zirconia toughened alumina (ZTA) composite ceramic in air was studied in detail. The results showed that the contact angle of the Ag-5CuO/ZTA system rapidly decreased from 81° at 970 °C to 45° at 990 °C during the heating process, however, moderate reductions in contact angle were observed in the subsequent heating and temperature holding stages. In comparison with the contact angle of pure Al2O3, an increment of about 4° of the stable contact angle of Ag-5CuO alloy on the heterogeneous ZTA was observed. The reaction between Al2O3 and CuO can reduce the damage of the CuO-rich liquid to ZrO2 in the ZTA substrate. Both oxygen and CuO were helpful in reducing the contact angle of Ag on ZTA and enhancing the bonding of the Ag/ZTA interface. The continuous CuO coating on ZTA and the monotectic liquid containing more CuO in the region near the triple line induced reductions of more than 40° and about 10° in the contact angle, respectively, between the initial and the CuO coating-improved wetting systems.


1991 ◽  
Vol 7 (Supple) ◽  
pp. 1443-1446 ◽  
Author(s):  
TOKUJI IKEDA ◽  
SYUJI MIYAOKA ◽  
SITYOGO OZAWA ◽  
FUMIO MATSUSHITA ◽  
DAISUKE KOBAYASHI ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4525
Author(s):  
Franziska Schachinger ◽  
Hucheng Chang ◽  
Stefan Scheiblbrandner ◽  
Roland Ludwig

The accurate determination of analyte concentrations with selective, fast, and robust methods is the key for process control, product analysis, environmental compliance, and medical applications. Enzyme-based biosensors meet these requirements to a high degree and can be operated with simple, cost efficient, and easy to use devices. This review focuses on enzymes capable of direct electron transfer (DET) to electrodes and also the electrode materials which can enable or enhance the DET type bioelectrocatalysis. It presents amperometric biosensors for the quantification of important medical, technical, and environmental analytes and it carves out the requirements for enzymes and electrode materials in DET-based third generation biosensors. This review critically surveys enzymes and biosensors for which DET has been reported. Single- or multi-cofactor enzymes featuring copper centers, hemes, FAD, FMN, or PQQ as prosthetic groups as well as fusion enzymes are presented. Nanomaterials, nanostructured electrodes, chemical surface modifications, and protein immobilization strategies are reviewed for their ability to support direct electrochemistry of enzymes. The combination of both biosensor elements—enzymes and electrodes—is evaluated by comparison of substrate specificity, current density, sensitivity, and the range of detection.


2021 ◽  
Vol 41 (1) ◽  
pp. 768-774
Author(s):  
Zuodong Liu ◽  
Shuyin Zhang ◽  
Pengyue Dong ◽  
Yu Yang ◽  
Qiqi Wang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 46 (1) ◽  
pp. 937-944 ◽  
Author(s):  
Xiaoyan Liu ◽  
Bin Zou ◽  
Hongyu Xing ◽  
Chuanzhen Huang

Sign in / Sign up

Export Citation Format

Share Document