scholarly journals Quantitative Accuracy and Precision in Multiplexed Single-Cell Proteomics

Author(s):  
Claudia Ctortecka ◽  
Karel Stejskal ◽  
Gabriela Krššáková ◽  
Sasha Mendjan ◽  
Karl Mechtler
2021 ◽  
Author(s):  
Claudia Ctortecka ◽  
Karel Stejskal ◽  
Gabriela Krššáková ◽  
Sasha Mendjan ◽  
Karl Mechtler

AbstractSingle-cell proteomics workflows have considerably improved in sensitivity and reproducibility to characterize yet unknown biological phenomena. With the emergence of multiplexed single-cell proteomics, studies increasingly present single-cell measurements in conjunction with an abundant congruent carrier to improve precursor selection and enhance identifications. While these extreme carrier spikes are often >100-times more abundant than the investigated samples, undoubtedly the total ion current increases, but quantitative accuracy possibly is affected. We here focus on narrowly titrated carrier spikes (i.e., <20x) and assess their elimination for comparable sensitivity at superior accuracy. We find that subtle changes in the carrier ratio can severely impact measurement variability and describe alternative multiplexing strategies to evaluate data quality. Lastly, we demonstrate elevated replicate overlap while preserving acquisition throughput at improved quantitative accuracy with DIA-TMT and discuss optimized experimental designs for multiplexed proteomics of trace samples. This comprehensive benchmarking gives an overview of currently available techniques and guides conceptualizing the optimal single-cell proteomics experiment.


2012 ◽  
Vol 404 (4) ◽  
pp. 1127-1139 ◽  
Author(s):  
Scott J. Geromanos ◽  
Chris Hughes ◽  
Steven Ciavarini ◽  
Johannes P. C. Vissers ◽  
James I. Langridge

2020 ◽  
Author(s):  
Lindsay K Pino ◽  
Josue Baeza ◽  
Richard Lauman ◽  
Birgit Schilling ◽  
Benjamin A Garcia

ABSTRACTStable isotope labeling by amino acids in cell culture (SILAC) coupled to data-dependent acquisition (DDA) is a common approach to quantitative proteomics with the desirable benefit of reducing batch effects during sample processing and data acquisition. More recently, using data-independent acquisition (DIA/SWATH) to systematically measure peptides has gained popularity for its comprehensiveness, reproducibility, and accuracy of quantification. The complementary advantages of these two techniques logically suggests combining them. Here, we develop a SILAC-DIA-MS workflow using free, open-source software. We determine empirically that using DIA achieves similar peptide detection numbers as DDA and that DIA improves the quantitative accuracy and precision of SILAC by an order of magnitude. Finally, we apply SILAC-DIA-MS to determine protein turnover rates of cells treated with bortezomib, a 26S proteasome inhibitor FDA-approved for multiple myeloma and mantle cell lymphoma. We observe that SILAC-DIA produces more sensitive protein turnover models. Of the proteins determined differentially degraded by both acquisition methods, we find known ubiquitin-proteasome degrands such as HNRNPK, EIF3A, and IF4A1/EIF4A-1, and a slower turnover for CATD, a protein implicated in invasive breast cancer. With improved quantification from DIA, we anticipate this workflow making SILAC-based experiments like protein turnover more sensitive.


2020 ◽  
Author(s):  
Collin Giguere ◽  
Harsh Vardhan Dubey ◽  
Vishal Kumar Sarsani ◽  
Hachem Saddiki ◽  
Shai He ◽  
...  

AbstractBackgroundRecently, it has become possible to collect next-generation DNA sequencing data sets that are composed of multiple samples from multiple biological units where each of these samples may be from a single cell or bulk tissue. Yet, there does not yet exist a tool for simulating DNA sequencing data from such a nested sampling arrangement with single-cell and bulk samples so that developers of analysis methods can assess accuracy and precision.ResultsWe have developed a tool that simulates DNA sequencing data from hierarchically grouped (correlated) samples where each sample is designated bulk or single-cell. Our tool uses a simple configuration file to define the experimental arrangement and can be integrated into software pipelines for testing of variant callers or other genomic tools.ConclusionsThe DNA sequencing data generated by our simulator is representative of real data and integrates seamlessly with standard downstream analysis tools.


2020 ◽  
Vol 19 (4) ◽  
pp. 730-743 ◽  
Author(s):  
Xien Yu Chua ◽  
Theresa Mensah ◽  
Timothy Aballo ◽  
Samuel G. Mackintosh ◽  
Ricky D. Edmondson ◽  
...  

Dynamic tyrosine phosphorylation is fundamental to a myriad of cellular processes. However, the inherently low abundance of tyrosine phosphorylation in the proteome and the inefficient enrichment of phosphotyrosine(pTyr)-containing peptides has led to poor pTyr peptide identification and quantitation, critically hindering researchers' ability to elucidate signaling pathways regulated by tyrosine phosphorylation in systems where cellular material is limited. The most popular approaches to wide-scale characterization of the tyrosine phosphoproteome use pTyr enrichment with pan-specific, anti-pTyr antibodies from a large amount of starting material. Methods that decrease the amount of starting material and increase the characterization depth of the tyrosine phosphoproteome while maintaining quantitative accuracy and precision would enable the discovery of tyrosine phosphorylation networks in rarer cell populations. To achieve these goals, the BOOST (Broad-spectrum Optimization Of Selective Triggering) method leveraging the multiplexing capability of tandem mass tags (TMT) and the use of pervanadate (PV) boost channels (cells treated with the broad-spectrum tyrosine phosphatase inhibitor PV) selectively increased the relative abundance of pTyr-containing peptides. After PV boost channels facilitated selective fragmentation of pTyr-containing peptides, TMT reporter ions delivered accurate quantitation of each peptide for the experimental samples while the quantitation from PV boost channels was ignored. This method yielded up to 6.3-fold boost in pTyr quantification depth of statistically significant data derived from contrived ratios, compared with TMT without PV boost channels or intensity-based label-free (LF) quantitation while maintaining quantitative accuracy and precision, allowing quantitation of over 2300 unique pTyr peptides from only 1 mg of T cell receptor-stimulated Jurkat T cells. The BOOST strategy can potentially be applied in analyses of other post-translational modifications where treatments that broadly elevate the levels of those modifications across the proteome are available.


2017 ◽  
Vol 16 (1) ◽  
pp. 95-115 ◽  
Author(s):  
Pawel J. Markiewicz ◽  
Matthias J. Ehrhardt ◽  
Kjell Erlandsson ◽  
Philip J. Noonan ◽  
Anna Barnes ◽  
...  

Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Sign in / Sign up

Export Citation Format

Share Document