Hybrid Molecular-Junction Mapping Technique for Simultaneous Measurements of Single-Molecule Electronic Conductance and Its Corresponding Binding Geometry in a Tunneling Junction

2020 ◽  
Vol 92 (9) ◽  
pp. 6423-6429 ◽  
Author(s):  
Haijian Chen ◽  
Yunchuan Li ◽  
Shuai Chang
Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4685-4686
Author(s):  
Hervé Dekkiche ◽  
Andrea Gemma ◽  
Fatemeh Tabatabaei ◽  
Andrei S. Batsanov ◽  
Thomas Niehaus ◽  
...  

Correction for ‘Electronic conductance and thermopower of single-molecule junctions of oligo(phenyleneethynylene) derivatives’ by Hervé Dekkiche et al., Nanoscale, 2020, 12, 18908–18917, DOI: 10.1039/D0NR04413J.


Author(s):  
Zhengzhong Zhang ◽  
Rui Bo ◽  
Chao Wang ◽  
Guang Song ◽  
Weishi Tan ◽  
...  

MRS Bulletin ◽  
2004 ◽  
Vol 29 (6) ◽  
pp. 376-384 ◽  
Author(s):  
Cherie R. Kagan ◽  
Mark A. Ratner

AbstractThis issue of MRS Bulletin on molecular transport junctions highlights the current experimental and theoretical understanding of molecular charge transport and its extension to the rapidly growing areas of molecular and carbon nanotube electronics. This introduction will outline the progress that has been made in understanding the mechanisms of molecular junction transport and the challenges and future directions in exploring charge transport on the molecular scale. In spite of the substantial challenges, molecular charge transport is of great interest for its intrinsic importance to potential single-molecule electronic, thin-film electronic, and optoelectronic applications.


Nanoscale ◽  
2020 ◽  
Vol 12 (36) ◽  
pp. 18908-18917 ◽  
Author(s):  
Hervé Dekkiche ◽  
Andrea Gemma ◽  
Fatemeh Tabatabaei ◽  
Andrei S. Batsanov ◽  
Thomas Niehaus ◽  
...  

OPE3 derivatives with tailored substituents are promising substrates for thermoelectric characterization using STM in single-molecule junctions with gold electrodes.


2016 ◽  
Vol 30 (13) ◽  
pp. 1642010 ◽  
Author(s):  
S. Kaneko ◽  
D. Murai ◽  
Sh. Fujii ◽  
M. Kiguchi

Here, we present simultaneous electronic and optical measurements of a single 1,4-benzenedithiol (BDT) molecular junctions to investigate the electronic and structural details in the molecular junction and to understand the charge transport property at the single molecular scale. The electronic property was investigated by DC conductance measurement while structural property was characterized using surface enhanced Raman scattering (SERS) measurement. The single BDT junctions sandwiched between Au nanogap-electrodes were prepared by the mechanically controllable break junction method at ambient conditions. The simultaneous conductance and SERS measurements demonstrate that ring deformation mode coupled to C–S stretching mode, ring breathing mode, and C=C stretching mode are detectable for the single BDT molecular junctions with electronic conductance of [Formula: see text] [Formula: see text]. The single molecule origin is supported by the characteristic variability of SERS within samples. Time evolution of the conductance and SERS signals indicated that the molecular conductance and the vibrational energy of the ring breathing mode exhibits anti-correlated relationship. This relationship can be mediated by time evolution of structural change in the single molecular junction and corresponding change in strength of metal–molecular coupling. The larger metal–molecular coupling causes higher electronic conductance of the molecular junction while charge transfer effect leads to weakening of molecular bonds and thus a resulting decrease in the vibration energy of the ring breathing mode.


2009 ◽  
Vol 81 (24) ◽  
pp. 9866-9870 ◽  
Author(s):  
Toshihisa Osaki ◽  
Hiroaki Suzuki ◽  
Bruno Le Pioufle ◽  
Shoji Takeuchi

Author(s):  
Shannon Yee ◽  
Jonathan Malen ◽  
Pramod Reddy ◽  
Rachel Segalman ◽  
Arun Majumdar

Electronic transport in molecular junctions has been studied through measurements of junction thermopower to evaluate the feasibility of thermoelectric (TE) energy generation using organic-inorganic hybrid materials. Energy transport and conversion in these junctions are heavily influenced by transport interactions at the metal-molecule interface. At this interface the discrete molecular orbitals overlap with continuum electronic states in the inorganic electrodes to create unique energy landscapes that cannot be realized in the organic or inorganic components alone. Over the past decade, scanning probe microscopes have been used to study the electronic conductance of single-molecule junctions[1–5]. Recently, we conducted measurements of junction thermopower using a modified scanning tunneling microscope (STM)[6]. Through our investigations, we have determined: (i) how the addition of molecular substituent groups can be used to predictably tune the TE properties of phenylenedithiol (PDT) junctions[7], (ii) how the length, molecular backbone, and end groups affect junction thermopower[8], and (iii) where electronic transport variations originate[9]. Furthermore, we have recently found that large (10 fold) TE enhancement can be achieved by effectively altering a (noble) metal junction using fullerenes (i.e., C60, PCBM, and C70). We associate the enhancement with the alignment of the frontier orbitals of the fullerene to the chemical potential of the inorganic electrodes. We further found that the thermopower can be predictably tuned by varying the work function of the contacts. This yields considerable promise for altering the surface states at interfaces for enhanced electronic and thermal transport. This paper highlights our work using thermopower as a probe for electronic transport, and reports preliminary results of TE conversion in fullerene-metal junctions.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Dean Kos ◽  
Giuliana Di Martino ◽  
Alexandra Boehmke ◽  
Bart de Nijs ◽  
Dénes Berta ◽  
...  

AbstractMolecular electronics promises a new generation of ultralow-energy information technologies, based around functional molecular junctions. Here, we report optical probing that exploits a gold nanoparticle in a plasmonic nanocavity geometry used as one terminal of a well-defined molecular junction, deposited as a self-assembled molecular monolayer on flat gold. A conductive transparent cantilever electrically contacts individual nanoparticles while maintaining optical access to the molecular junction. Optical readout of molecular structure in the junction reveals ultralow-energy switching of ∼50 zJ, from a nano-electromechanical torsion spring at the single molecule level. Real-time Raman measurements show these electronic device characteristics are directly affected by this molecular torsion, which can be explained using a simple circuit model based on junction capacitances, confirmed by density functional theory calculations. This nanomechanical degree of freedom is normally invisible and ignored in electrical transport measurements but is vital to the design and exploitation of molecules as quantum-coherent electronic nanodevices.


2019 ◽  
Vol 10 (11) ◽  
pp. 3249-3256 ◽  
Author(s):  
Leopoldo Mejía ◽  
Ignacio Franco

We demonstrate how simultaneous measurements of conductance and force can be used to monitor the step-by-step progress of a mechanically activated cis-to-trans isomerization single-molecule reaction, including events that cannot be distinguished using force or conductance alone.


Sign in / Sign up

Export Citation Format

Share Document