scholarly journals Binding Affinity and Function of the Extremely Disordered Protein Complex Containing Human Linker Histone H1.0 and Its Chaperone ProTα

Biochemistry ◽  
2018 ◽  
Vol 57 (48) ◽  
pp. 6645-6648 ◽  
Author(s):  
Hanqiao Feng ◽  
Bing-Rui Zhou ◽  
Yawen Bai
2006 ◽  
Vol 14 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Christopher L. Woodcock ◽  
Arthur I. Skoultchi ◽  
Yuhong Fan

2022 ◽  
Author(s):  
Pétur O. Heidarsson ◽  
Davide Mercadante ◽  
Andrea Sottini ◽  
Daniel Nettels ◽  
Madeleine B. Borgia ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Hui Ye ◽  
Shamsideen A Ojelade ◽  
David Li-Kroeger ◽  
Zhongyuan Zuo ◽  
Liping Wang ◽  
...  

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson’s and Alzheimer’s disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


2018 ◽  
Vol 114 (suppl_1) ◽  
pp. S113-S113
Author(s):  
G A Marchal ◽  
V Portero ◽  
S Casini ◽  
A O Verkerk ◽  
N Galjart ◽  
...  

2005 ◽  
Vol 169 (6) ◽  
pp. 859-869 ◽  
Author(s):  
Thomas J. Maresca ◽  
Benjamin S. Freedman ◽  
Rebecca Heald

During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis.


2008 ◽  
Vol 414 (2) ◽  
pp. 195-203 ◽  
Author(s):  
Chih-Chi Andrew Hu ◽  
Thomas Bachmann ◽  
Ge Zhou ◽  
Feng-Xia Liang ◽  
Jorge Ghiso ◽  
...  

The apical surface of the mammalian urothelium is almost completely covered by two-dimensional protein crystals (known as urothelial plaques) of hexagonally packed 16 nm particles consisting of two UP (uroplakin) heterodimers, i.e. UPs Ia/II and Ib/III pairs. UPs are functionally important as they contribute to the urothelial permeability barrier function, and UPIa may serve as the receptor for the uropathogenic Escherichia coli that causes over 90% of urinary tract infections. We study here how the UP proteins are assembled and targeted to the urothelial apical surface, paying special attention to the roles of the prosequence of UPII in UP oligomerization. We show that (i) the formation of the UPIa/UPII heterodimer, necessary for ER (endoplasmic reticulum) exit, requires disulfide formation in the prosequence domain of proUPII (the immature form of UPII still containing its prosequence); (ii) differentiation-dependent N-glycosylation of the prosequence leads to UP stabilization; (iii) a failure to form tetramers in cultured urothelial cells, in part due to altered glycosylation of the prosequence, may block two-dimensional crystal formation; and (iv) the prosequence of UPII remains attached to the mature protein complex on the urothelial apical surface even after it has been cleaved by the trans-Golgi-network-associated furin. Our results indicate that proper secondary modifications of the prosequence of UPII play important roles in regulating the oligomerization and function of the UP protein complex.


Sign in / Sign up

Export Citation Format

Share Document