Electrophoretic Deposition of Gentamicin-Loaded Silk Fibroin Coatings on 3D-Printed Porous Cobalt–Chromium–Molybdenum Bone Substitutes to Prevent Orthopedic Implant Infections

2017 ◽  
Vol 18 (11) ◽  
pp. 3776-3787 ◽  
Author(s):  
Changjun Han ◽  
Yao Yao ◽  
Xian Cheng ◽  
Jiaxin Luo ◽  
Pu Luo ◽  
...  
2021 ◽  
Vol 22 (23) ◽  
pp. 12721
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Alberto Tuñón-Molina ◽  
Miguel Martí ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material’s viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


2021 ◽  
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Miguel Marti ◽  
Alberto Tunon-Molina ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 mins). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS CoV 2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver from 5 hours to 30 minutes. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-COV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


2020 ◽  
Vol XV (1) ◽  
Author(s):  
E. Presnyakov ◽  
I. Bozo ◽  
I. Smirnov ◽  
V. Komlev ◽  
V. Popov ◽  
...  

Alloy Digest ◽  
2014 ◽  
Vol 63 (12) ◽  

Abstract UGI KC35N is a nonmagnetic nickel-cobalt-chromium-molybdenum alloy with a fully austenitic structure. This datasheet provides information on composition, physical properties, elasticity, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-124. Producer or source: Schmolz + Bickenbach USA Inc..


2017 ◽  
Vol 30 (3) ◽  
pp. 1259-1270 ◽  
Author(s):  
Damien McParland ◽  
Szymon Baron ◽  
Sarah O’Rourke ◽  
Denis Dowling ◽  
Eamonn Ahearne ◽  
...  

2020 ◽  
Vol 127 (1) ◽  
Author(s):  
Daniel Metzner ◽  
Peter Lickschat ◽  
Steffen Weißmantel

AbstractThe authors report on the results of surface treatment experiments using a solid-state amplified laser source emitting laser pulses with a pulse duration of 10 ps. The laser source allows the generation of pulse trains (bursts) with an intra-burst pulse repetition rate of 80 MHz (pulse-to-pulse time interval about 12.5 ns) with up to eight pulses per burst. In this study a wavelength of 1064 nm was used to investigate both ablation of material and laser-induced surface modifications occuring in metallic implant alloys CoCrMo (cobalt-chromium-molybdenum) and TiAlV (titanium-aluminum-vanadium) in dependence of the number of pulses and fluences per pulse in the burst. By using the burst mode, a smoothing effect occurs in a certain parameter range, resulting in very low surface roughness of the generated microstructures. It is demonstrated that at fluences per pulse which are smaller than the material-specific ablation threshold, a self-organized pore formation takes place if a defined number of pulses per burst is used. Thus, the advantage of the MHz burst mode in terms of a possible surface modification is established.


2020 ◽  
Author(s):  
Zhiguo Yuan ◽  
Wei Zhang ◽  
Xiangchao Meng ◽  
Jue Zhang ◽  
Teng TengLong ◽  
...  

Abstract Objective: This study aimed to quantitatively investigate the peri-implant histology of applying defect-size polyether ether ketone (PEEK) implant for the treatment of localized osteochondral defects in the femoral head and compared it with cobalt chromium molybdenum (CoCrMo) alloy implant.Methods: A femoral head osteochondral defect model was created in the left hips of goats (n=12). Defects were randomly treated by immediate placement of a PEEK (n=6) or CoCrMo implant (n=6). The un-operated right hip joints served as a control. Goats were sacrificed at 12 weeks. Periprosthetic cartilage quality was semi-quantitatively analyzed macroscopically and microscopically. Implant osseointegration was measured by micro-CT and histomorphometry.Results: The modified macroscopic articular evaluation score in the PEEK group was lower than that in the CoCrMo group (p<0.05), and the histological score of the periprosthetic and acetabular cartilage in the PEEK group was lower than that in the CoCrMo group (P<0.05). The mean bone-implant contact for PEEK implants was comparable with that for CoCrMo alloy implants at 12 weeks.Conclusions: A PEEK implant for the treatment of local osteochondral defect in the femoral head demonstrated effective fixation and superior in vivo cartilage protection compared with an identical CoCrMo alloy implant.


Sign in / Sign up

Export Citation Format

Share Document