scholarly journals 3D Printed Cobalt-Chromium-Molybdenum Porous Superalloy with Superior Antiviral Activity

2021 ◽  
Vol 22 (23) ◽  
pp. 12721
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Alberto Tuñón-Molina ◽  
Miguel Martí ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material’s viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.

2021 ◽  
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Miguel Marti ◽  
Alberto Tunon-Molina ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 mins). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS CoV 2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver from 5 hours to 30 minutes. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-COV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Alloy Digest ◽  
2014 ◽  
Vol 63 (12) ◽  

Abstract UGI KC35N is a nonmagnetic nickel-cobalt-chromium-molybdenum alloy with a fully austenitic structure. This datasheet provides information on composition, physical properties, elasticity, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Co-124. Producer or source: Schmolz + Bickenbach USA Inc..


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


2017 ◽  
Vol 30 (3) ◽  
pp. 1259-1270 ◽  
Author(s):  
Damien McParland ◽  
Szymon Baron ◽  
Sarah O’Rourke ◽  
Denis Dowling ◽  
Eamonn Ahearne ◽  
...  

2020 ◽  
Vol 127 (1) ◽  
Author(s):  
Daniel Metzner ◽  
Peter Lickschat ◽  
Steffen Weißmantel

AbstractThe authors report on the results of surface treatment experiments using a solid-state amplified laser source emitting laser pulses with a pulse duration of 10 ps. The laser source allows the generation of pulse trains (bursts) with an intra-burst pulse repetition rate of 80 MHz (pulse-to-pulse time interval about 12.5 ns) with up to eight pulses per burst. In this study a wavelength of 1064 nm was used to investigate both ablation of material and laser-induced surface modifications occuring in metallic implant alloys CoCrMo (cobalt-chromium-molybdenum) and TiAlV (titanium-aluminum-vanadium) in dependence of the number of pulses and fluences per pulse in the burst. By using the burst mode, a smoothing effect occurs in a certain parameter range, resulting in very low surface roughness of the generated microstructures. It is demonstrated that at fluences per pulse which are smaller than the material-specific ablation threshold, a self-organized pore formation takes place if a defined number of pulses per burst is used. Thus, the advantage of the MHz burst mode in terms of a possible surface modification is established.


2020 ◽  
Author(s):  
Zhiguo Yuan ◽  
Wei Zhang ◽  
Xiangchao Meng ◽  
Jue Zhang ◽  
Teng TengLong ◽  
...  

Abstract Objective: This study aimed to quantitatively investigate the peri-implant histology of applying defect-size polyether ether ketone (PEEK) implant for the treatment of localized osteochondral defects in the femoral head and compared it with cobalt chromium molybdenum (CoCrMo) alloy implant.Methods: A femoral head osteochondral defect model was created in the left hips of goats (n=12). Defects were randomly treated by immediate placement of a PEEK (n=6) or CoCrMo implant (n=6). The un-operated right hip joints served as a control. Goats were sacrificed at 12 weeks. Periprosthetic cartilage quality was semi-quantitatively analyzed macroscopically and microscopically. Implant osseointegration was measured by micro-CT and histomorphometry.Results: The modified macroscopic articular evaluation score in the PEEK group was lower than that in the CoCrMo group (p<0.05), and the histological score of the periprosthetic and acetabular cartilage in the PEEK group was lower than that in the CoCrMo group (P<0.05). The mean bone-implant contact for PEEK implants was comparable with that for CoCrMo alloy implants at 12 weeks.Conclusions: A PEEK implant for the treatment of local osteochondral defect in the femoral head demonstrated effective fixation and superior in vivo cartilage protection compared with an identical CoCrMo alloy implant.


2018 ◽  
Vol 15 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Alexander I Evins ◽  
John Dutton ◽  
Sayem S Imam ◽  
Amal O Dadi ◽  
Tao Xu ◽  
...  

Abstract BACKGROUND Currently, implantation of patient-specific cranial prostheses requires reoperation after a period for design and formulation by a third-party manufacturer. Recently, 3-dimensional (3D) printing via fused deposition modeling has demonstrated increased ease of use, rapid production time, and significantly reduced costs, enabling expanded potential for surgical application. Three-dimensional printing may allow neurosurgeons to remove bone, perform a rapid intraoperative scan of the opening, and 3D print custom cranioplastic prostheses during the remainder of the procedure. OBJECTIVE To evaluate the feasibility of using a commercially available 3D printer to develop and produce on-demand intraoperative patient-specific cranioplastic prostheses in real time and assess the associated costs, fabrication time, and technical difficulty. METHODS Five different craniectomies were each fashioned on 3 cadaveric specimens (6 sides) to sample regions with varying topography, size, thickness, curvature, and complexity. Computed tomography-based cranioplastic implants were designed, formulated, and implanted. Accuracy of development and fabrication, as well as implantation ability and fit, integration with exiting fixation devices, and incorporation of integrated seamless fixation plates were qualitatively evaluated. RESULTS All cranioprostheses were successfully designed and printed. Average time for design, from importation of scan data to initiation of printing, was 14.6 min and average print time for all cranioprostheses was 108.6 min. CONCLUSION On-demand 3D printing of cranial prostheses is a simple, feasible, inexpensive, and rapid solution that may help improve cosmetic outcomes; significantly reduce production time and cost—expanding availability; eliminate the need for reoperation in select cases, reducing morbidity; and has the potential to decrease perioperative complications including infection and resorption.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000099-000103
Author(s):  
William A. Goodman

Abstract Goodman Technologies has been directly responsive to, and focused on, 3D printing and additive manufacturing techniques, and what it takes to manufacture in zero-gravity. During a NASA Phase I SBIR project, using a small multi-printhead machine, we showed that it was possible to formulate and 3D print silicon carbide into shapes appropriate for lightweight mirrors and structures at the production rate of 1.2 square-meter/day. Gradient lattice coupons with feature sizes on the order of 0.8mm were printed and were easily machined to very fine tolerances, ten-thousandths of an inch by Coastline Optics in Camarillo, CA. To further elaborate on the list of achievements, in Phase I, Team GT demonstrated three different ceramization techniques for 3D printing low areal cost, ultra-lightweight Silicon Carbide (SiC) mirrors and structures, radiation shielding, and electronics, several of which could be employed in microgravity The Goodman Technologies briefing presented at 2017 Mirror Technology Days “3D Printed Silicon Carbide Scalable to Meter-Class Segments for Far-Infrared Surveyor: NASA Contract NNX17CM29P along with sample coupons resulted in extreme interest from both Government and the Contractor communities. Our materials, which we call RoboSiC™, is suited for many other applications including heat sinks and radiation shielding for space electronics, and we have already started to make the first parts for these applications. The successful Phase I project suggests that we will meet or exceed all NASA requirements for the primary mirror of a Far-IR Surveyor such as the Origins Space Telescope (OST) and have a high probability solution for the LUVOIR Surveyor in time for the 2020 Decadal Survey. Results indicate that printing on the ground will achieve an areal density of 7.75 kg/square-meter (~39% of a James Webb Space Telescope (JWST) beryllium segment), a cost to print of $60K/segment, and an optical surface that has nanometer-scale tolerances. Printing in the microgravity environment of space we have the potential to achieve an areal density of 1.0–2.0 kg/square meter (&lt;10% of a JWST beryllium segment), with a cost to print of ~$10K/segment. The areal density is 2–15 times better than the NASA goal of 15 kg/square meter, and the costs are substantially better than the NASA goal of $100K/square meter. The encapsulated gradient lattice construction provides a uniform CTE throughout the part for dimensional stability, incredible specific stiffness, and the added benefit of cryo-damping. For the extreme wavefront control required by the Large UV/Optical/IR Surveyor (LUVOIR) the regularly spaced lattice construction should also provide deterministic mapping of any optical distortions directly to the regular actuator spacing of a deformable mirror (DM). Some of our processes will also allow for direct embedding of electronics for active structures and segments. Encapsulation of the lattice structures will allow for actively cooling with helium for unprecedented low emissivity and thermal control. Several decades of experience and testing with SiC have shown that our materials will survive, nay thrive in, the most extreme Space, Cryogenic, Laser and Nuclear Environments.


Sign in / Sign up

Export Citation Format

Share Document