cobalt chromium molybdenum
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 27)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 2 (2) ◽  
pp. 49
Author(s):  
Rezza Ruzuqi ◽  
Drs. Djony Izak Rudyardjo, M.Si. ◽  
Andi Hamim Zaidan, S.Si., M.Si., Ph.D.

The research has been conducted to manufacture nickel-based Superalloy materials. The purpose of this research was to find out the effects of variation of nickel composition on physical and mechanical properties of the Superalloy materials and find out the appropriate composition of Superalloy materials as materials for turbine blades. This research used nickel, cobalt, chromium, molybdenum, aluminium, and titanium commercial. The results showed that with more addition of nickel composition, the density and hardness values increased. This research showed that nickel-based Superalloy material 59 wt% was better applied as materials for turbine blades. It is also supported by the results of the test microstructure, where the structure of the sample morphology is more delicate and denser and contains smaller pores. Based on the XRD test results are also shown in the sample has been formed Superalloys phase.


2021 ◽  
Vol 22 (23) ◽  
pp. 12721
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Alberto Tuñón-Molina ◽  
Miguel Martí ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 min). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS-CoV-2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver, as the material’s viral inactivation time was from 5 h to 30 min. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-CoV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


2021 ◽  
Vol 7 (4) ◽  
Author(s):  
Mohamad Taufiqurrakhman ◽  
Anne Neville ◽  
Michael G. Bryant

AbstractThe formation of tribochemical reaction layers, better known as tribofilms, on cobalt-chromium-molybdenum (CoCrMo) alloys commonly used in orthopaedic applications has been hypothesized to reduce degradation owing to wear and corrosion. However, the mechanisms and pathways influencing tribofilm formation remain largely unknown. This study aims to develop a clearer understanding of the role of protein structures and its concentration on tribocorrosion and surface tribofilms formed on CoCrMo alloys during boundary regime sliding. A reciprocating tribometer with a three-electrode electrochemical cell was employed to simulate and monitor the tribocorrosion of CoCrMo in situ. As-received Foetal Bovine Serum (as-FBS) and pre-heated FBS at 70 °C for 1 h (de-FBS) were diluted with saline (0.9% NaCl) at different concentrations (25% and 75% v/v) and utilized as electrolytes during the tribocorrosion tests. The result shows that the denatured protein structure in electrolyte tends to reduce the volume losses due to wear and corrosion on the CoCrMo samples with an appreciation of the protein tribofilms. On the other hand, an increased protein concentration increased the total volume loss due to corrosive processes. A novel finding revealed in this study is that the tribocorrosion mechanism of the CoCrMo surface is dependent on the protein structure, concentration and sliding duration due to the change in surface condition.


2021 ◽  
Vol 2021 (8) ◽  
pp. 22-28
Author(s):  
Natal'ya Saprykina ◽  
Aleksandr Saprykin ◽  
Egor Ibragimov ◽  
Margarita Himich

The purpose of this investigation consists in the analysis of possibility to obtain products by means of the SLP method using powders of cobalt, chromium and molybdenum having considerable difference in melting temperatures of cobalt (1768ºC), chromium (2130ºC) and molybdenum (2890ºC), density, thermal conduction and solving for the optimum technological modes of powder composition melting to obtain samples with lower porosity. The investigation methods include methods of physical material science. Investigation results and novelty: a procedure for obtaining a powder composite of the cobalt-chromium-molybdenum system for selective laser melting is developed. There are carried out experimental investigations on the selection of optimum technological modes for the layer-by-layer laser melting of a cobalt-chromium-molybdenum alloy of powder composition. A method for layer-by-layer laser synthesis for the solution of a principle matter – possibility for the synthesis of the products of cobalt chromium and molybdenum powders having a considerable difference in melting temperatures, density, heat conductivity and so on. The investigations of model alloy samples of cobalt-chromuim-molybdenum system obtained through the method of layer-by-layer laser synthesis on optimized technological modes through the methods of scanning electronic microscopy allow defining sample porosity. The generalization of obtained numerical and experimental investigation results and definition of essential conditions for selective laser melting allow optimizing modes and parameters of the synthesis. Conclusions: the optimum modes of selective laser melting for obtaining the samples with the powder composition of 66 mas. % Co, 28 mas. % Cr, 6 mas.% Mo through the method of selective laser melting with minimum porosity are: laser capacity P=100Wt, scanning rate v=350mm/s, modulation 5000Hz, scanning pitch s=0.1mm, layer thickness h=0.03mm, melting process takes place in protective argon environment.


2021 ◽  
Author(s):  
Arun Arjunan ◽  
John Robinson ◽  
Ahmad Baroutaji ◽  
Miguel Marti ◽  
Alberto Tunon-Molina ◽  
...  

COVID-19 pandemic and associated supply-chain disruptions emphasise the requirement for antimicrobial materials for on-demand manufacturing. Besides aerosol transmission, SARS-CoV-2 is also propagated through contact with virus-contaminated surfaces. As such, the development of effective biofunctional materials that can inactivate SARS-CoV-2 is critical for pandemic preparedness. Such materials will enable the rational development of antiviral devices with prolonged serviceability, reducing the environmental burden of disposable alternatives. This research reveals the novel use of Laser Powder Bed Fusion (LPBF) to 3D print porous Cobalt-Chromium-Molybdenum (Co-Cr-Mo) superalloy with potent antiviral activity (100% viral inactivation in 30 mins). The porous material was rationally conceived using a multi-objective surrogate model featuring track thickness (tt) and pore diameter (ϕd) as responses. The regression analysis found the most significant parameters for Co-Cr-Mo track formation to be the interaction effects of scanning rate (Vs) and laser power (Pl) in the order PlVs>Vs>Pl. Contrastively, the pore diameter was found to be primarily driven by the hatch spacing (Sh). The study is the first to demonstrate the superior antiviral properties of 3D printed Co-Cr-Mo superalloy against an enveloped virus used as biosafe viral model of SARS CoV 2. The material significantly outperforms the viral inactivation time of other broadly used antiviral metals such as copper and silver from 5 hours to 30 minutes. As such, the study goes beyond the current state-of-the-art in antiviral alloys to provide extra protection to combat the SARS-COV-2 viral spread. The evolving nature of the COVID-19 pandemic brings new and unpredictable challenges where on-demand 3D printing of antiviral materials can achieve rapid solutions while reducing the environmental impact of disposable devices.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1005
Author(s):  
Hla Htoot Wai Wai Cho ◽  
Atsushi Takaichi ◽  
Yuka Kajima ◽  
Hein Linn Htat ◽  
Nuttaphon Kittikundecha ◽  
...  

Although post-heat treatment can improve the fatigue life of selective laser melting (SLM)-fabricated cobalt chromium molybdenum (CoCrMo) alloys, the effect of cooling conditions on the fatigue properties of such alloys remains unclear. In this study, we fabricated SLM CoCrMo alloy specimens and, after heat-treating them, cooled them either via furnace-cooling (FC) or air-cooling (AC). Subsequently, we analyzed their microstructures using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, electron backscattered diffraction, confocal laser scanning microscopy, and X-ray diffraction. Tensile and Vickers hardness (HV) tests and axial-fatigue tests were also conducted to assess their mechanical and fatigue properties, respectively. The microstructures of all samples showed homogeneous equiaxed grains, with the grains and precipitates of the AC samples (grain size: 84.9 μm) smaller than those of the FC samples (grain size: 109.7 μm). The AC samples exhibited better ductility than the FC samples. However, we observed no significant differences in the 0.2% yield strength and HV tests. The S–N curve derived from the fatigue tests showed that the AC samples had greater fatigue life than the FC samples. Therefore, a high cooling rate during post-heat treatment is effective in reducing grain and precipitate sizes, resulting in improved ductility and fatigue life.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2010
Author(s):  
Grzegorz Matula ◽  
Aleksandra Szatkowska ◽  
Krzysztof Matus ◽  
Błażej Tomiczek ◽  
Mirosława Pawlyta

Cobalt–chromium–molybdenum alloys samples were obtained by the powder injection molding method (PIM). PIM is dedicated to the mass production of components and can manufacture several grades of dental screws, bolts, stabilizers, or implants. As a skeleton component, ethylene–vinyl acetate (EVA copolymer) with a low temperature of processing and softening point was used. The choice of a low-temperature binder made it necessary to use a coarse ceramic powder as a mechanical support of the green sample during sintering. The injection-molded materials were thermally degraded in N2 or Ar-5%H2 and further sintered in N2-5%H2 or Ar-5%H2 at 1300 or 1350 °C for 30 min. The structure of the obtained samples was characterized by X-ray diffraction and electron microscopy. Mechanical properties, including hardness and three-point bending tests, confirmed that a nitrogen-rich atmosphere significantly increases the bending strength compared to the material manufactured in Ar-5%H2. This is due to the precipitation of numerous fine nitrides and intermetallic phases that strengthen the ductile γ-phase matrix.


2021 ◽  
Vol 313 ◽  
pp. 50-58
Author(s):  
A.A. Saprikin ◽  
Yurii P. Sharkeev ◽  
Natalya A. Saprykina ◽  
Margarita A. Khimich ◽  
Egor A. Ibragimov

Heat resistant cobalt-based alloys have found a specific niche in the present-day mechanical engineering due to their unique properties. To begin with, cobalt-based alloys are used as corrosion, heat and wear resistant materials intended for aggressive environments and operation at extreme temperatures, e.g. blades, nozzles, swirlers, rings and other elements of turbines and internal combustion engines. Traditional molding methods applied in the mechanical engineering fail to provide necessary operational and technological characteristics of aforementioned machine parts. Owing to selective laser melting it is possible to reduce a production time and manufacturing costs for machine elements with a complex physical configuration and generate an alloy with an extraordinary structure, which is not found in traditionally combined compounds. A structure of cobalt exists in two crystal modifications: a hexagonal close-packed epsilon phase, a low-temperature phase and a face-centered cubic lattice gamma phase, a high-temperature phase. The alloy hardness is directly related to an amount of a low-temperature phase. The laser melting shortens a laser beam impact time on a powder composition due to a higher power and laser travelling speed. A high value of heat conductivity seems to be the reason for rapid solidification and cooling, which, in their turn, increase a percent of an alpha-martensite phase in an alloy and improve the hardness and wear resistance of machine parts. The reported paper summarizes studies aimed at the development of a stable phase structure three-component alloy (Сo-66 mass % Cr-6 mass % Mo) based on the cobalt-chromium-molybdenum system and mixed up via selective laser melting.


Sign in / Sign up

Export Citation Format

Share Document