Amorphous TiO2 Buffer Layer Boosts Efficiency of Quantum Dot Sensitized Solar Cells to over 9%

2015 ◽  
Vol 27 (24) ◽  
pp. 8398-8405 ◽  
Author(s):  
Zhenwei Ren ◽  
Jin Wang ◽  
Zhenxiao Pan ◽  
Ke Zhao ◽  
Hua Zhang ◽  
...  
Solar Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 355-360
Author(s):  
S. Akhil ◽  
J. Kusuma ◽  
S. Akash ◽  
R. Geetha Balakrishna

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2638
Author(s):  
Nguyen Thi Kim Chung ◽  
Phat Tan Nguyen ◽  
Ha Thanh Tung ◽  
Dang Huu Phuc

In this study, we provide the reader with an overview of quantum dot application in solar cells to replace dye molecules, where the quantum dots play a key role in photon absorption and excited charge generation in the device. The brief shows the types of quantum dot sensitized solar cells and presents the obtained results of them for each type of cell, and provides the advantages and disadvantages. Lastly, methods are proposed to improve the efficiency performance in the next researching.


2021 ◽  
Vol 727 ◽  
pp. 138678
Author(s):  
Mei Xin Chen ◽  
Ya Qian Bai ◽  
Xin Na Guan ◽  
Jia Wei Chen ◽  
Jing Hui Zeng

2016 ◽  
Vol 4 (21) ◽  
pp. 8161-8171 ◽  
Author(s):  
Chandu V. V. M. Gopi ◽  
Mallineni Venkata-Haritha ◽  
Young-Seok Lee ◽  
Hee-Je Kim

Metal sulfide decorated with ZnO NRs (ZnO/CoS, ZnO/NiS, ZnO/CuS and ZnO/PbS) were fabricated and used as efficient CEs for QDSSCs.


Sign in / Sign up

Export Citation Format

Share Document