Interpreting Water Uptake by Shale with Ion Exchange, Surface Complexation, and Disjoining Pressure

2019 ◽  
Vol 33 (9) ◽  
pp. 8250-8258 ◽  
Author(s):  
Lingping Zeng ◽  
Yongqiang Chen ◽  
Yunhu Lu ◽  
Hon Chung Lau ◽  
Md Mofazzal Hossain ◽  
...  
2020 ◽  
Vol 46 (6) ◽  
pp. 510-513
Author(s):  
D. A. Jurchenko ◽  
S. K. Evstropiev ◽  
N. V. Nikonorov

2020 ◽  
Vol 82 (5) ◽  
pp. 984-997
Author(s):  
Tatyana Kouznetsova ◽  
Andrei Ivanets ◽  
Vladimir Prozorovich ◽  
Ahmad Hosseini-Bandegharaei ◽  
Hai Nguyen Tran ◽  
...  

Abstract The research aimed to develop a novel mesoporous aluminosilicate/zeolite composite by the template co-precipitation method. The effect of aluminosilicate (AlSi) and zeolite (NaY) on the basic properties and adsorption capacity of the resultant composite was conducted at different mass ratios of AlSi/NaY (i.e., 5/90, 10/80, 15/85, 20/80, and 50/50). The adsorption characteristics of such composite and its feedstock materials (i.e., aluminosilicates and zeolite) towards radioactive Sr2+ ions and toxic metals (Cu2+ and Pb2+ ions) in aqueous solutions were investigated. Results indicated that BET surface area (SBET), total pore volume (VTotal), and mesopore volume (VMeso) of prepared materials followed the decreasing order: aluminosilicate (890 m2/g, 0.680 cm3/g, and 0.644 cm3/g) > zeolite (623 m2/g, 0.352 cm3/g, and 0.111 cm3/g) > AlSi/NaY (20/80) composite (370 m2/g, 0.254 cm3/g, and 0.154 cm3/g, respectively). The Langmuir maximum adsorption capacity (Qm) of metal ions (Sr2+, Cu2+, and Pb2+) in single-component solution was 260 mg/g, 220 mg/g, and 161 mg/g (for zeolite), 153 mg/g, 37.9 mg/g, and 66.5 mg/g (for aluminosilicate), and 186 mg/g, 140 mg/g, and 77.8 mg/g for (AlSi/NaY (20/80) composite), respectively. Ion exchange was regarded as a domain adsorption mechanism of metal ions in solution by zeolite; meanwhile, inner-surface complexation was domain one for aluminosilicate. Ion exchange and inner-surface complexation might be mainly responsible for adsorbing metal ions onto the AlSi/NaY composite. Pore-filling mechanism was a less important contributor during the adsorption process. The results of competitive adsorption under binary-components (Cu2+ and Sr2+) and ternary-components (Cu2+, Pb2+, and Sr2) demonstrated that the removal efficacy of target metals by the aluminosilicate, zeolite, and their composite remarkably decreased. The synthesized AlSi/NaY composite might serve as a promising adsorbent for real water treatment.


2003 ◽  
Vol 807 ◽  
Author(s):  
Caterina Talerico ◽  
Michael Ochs ◽  
Shinzo Ueta ◽  
Noriyuki Sasaki

ABSTRACTThe effects of key geochemical parameters on Kd values for radionuclides in the host rock (pumice, sandstone) of a LLW repository were elucidated through a sensitivity analysis, using a thermodynamic speciation/sorption model for the elements Sr and Ni. The complex mineral assemblage of the rock was approximated by a component-additivity approach. Using published ion exchange and surface complexation parameters, Kd for both Sr and Ni could be well explained by the same model mineralogy and surface chemistry. Model results suggest that pCO2 can have a significant effect on Kd, and that a correct approximation of groundwater chemistry is a critical component of sorption modeling.


2005 ◽  
Vol 118 (1) ◽  
pp. 98-106 ◽  
Author(s):  
Jun Ho Lee ◽  
Jong Hoon Lee ◽  
Jae-Do Nam ◽  
Hyoukryeol Choi ◽  
Kwangmok Jung ◽  
...  

2013 ◽  
Vol 805-806 ◽  
pp. 1321-1324
Author(s):  
Hai Dan Lin ◽  
Xiao Ying Yang ◽  
Cheng Xun Sun

A new series of hydrophobic-hydrophilic multiblock sulfonated poly (arylene ether ketone)-b-poly (arylene ether ketone) copolymers were successfully synthesized and evaluated for use as proton exchange membranes (PEMs). The membrane properties of block copolymers including ion exchange capacities (IECs), water uptake and proton conductivities were characterized for the multiblock copolymers and compared with random sulfonated poly (arylene ether) s and other multiblock copolymer membranes at similar ion exchange capacity value. This series of multiblock copolymers showed moderate conductivities up to 0.063 S/cm at 80 °C with very low water uptake of 19%. Therefore, they are considered to be promising PEM materials for fuel cells.


Sign in / Sign up

Export Citation Format

Share Document