scholarly journals Influence of the UV/H2O2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation

2020 ◽  
Vol 54 (23) ◽  
pp. 14964-14973
Author(s):  
Yingying Xiang ◽  
Michael Gonsior ◽  
Philippe Schmitt-Kopplin ◽  
Chii Shang
2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


Desalination ◽  
2005 ◽  
Vol 176 (1-3) ◽  
pp. 189-200 ◽  
Author(s):  
Yongrui Tan ◽  
James E. Kilduff ◽  
Mehmet Kitis ◽  
Tanju Karanfil

2011 ◽  
Vol 64 (9) ◽  
pp. 1876-1884 ◽  
Author(s):  
Anat Lakretz ◽  
Eliora Z. Ron ◽  
Tali Harif ◽  
Hadas Mamane

The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H2O2/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H2O2/UV prevented biofilm formation: (a) up to 24 h post treatment – when residual H2O2 was neutralized; (b) completely (days) – when residual H2O2 was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H2O2/UV system compared to UV irradiation alone, after short biofilm incubation times (<24 h). This effect was H2O2 concentration dependent and can be explained by the high organic content of these water samples, whereby an increase in NOM could enhance •OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H2O2conc. post-treatment could prevent bacterial regrowth and biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document