Effect of Algal Organic Matter on the OH Radical Reactivity and Operating Condition in UV/H2O2 Advanced Oxidation Process

2020 ◽  
Vol 28 (4) ◽  
pp. 15-23
Author(s):  
Sookhyun Nam ◽  
Juwon Lee ◽  
Eunju Kim ◽  
Tae-Mun Hwang
2019 ◽  
Vol 5 (11) ◽  
pp. 1985-1992 ◽  
Author(s):  
Nor Elhouda Chadi ◽  
Slimane Merouani ◽  
Oualid Hamdaoui ◽  
Mohammed Bouhelassa ◽  
Muthupandian Ashokkumar

We have recently reported that the reaction of H2O2/IO4− could be a new advanced oxidation process for water treatment [N. E. Chadi, S. Merouani, O. Hamdaoui, M. Bouhelassa and M. Ashokkumar, Environ. Sci.: Water Res. Technol., 2019, 5, 1113–1123].


2011 ◽  
Vol 64 (9) ◽  
pp. 1876-1884 ◽  
Author(s):  
Anat Lakretz ◽  
Eliora Z. Ron ◽  
Tali Harif ◽  
Hadas Mamane

The main goal of this study was to examine the influence of natural organic matter (NOM) on the efficiency of H2O2/UV advanced oxidation process (AOP) as a preventive treatment for biofilm control. Pseudomonas aeruginosa PAO1 biofilm-forming bacteria were suspended in water and exposed to various AOP conditions with different NOM concentrations, and compared to natural waters. H2O2/UV prevented biofilm formation: (a) up to 24 h post treatment – when residual H2O2 was neutralized; (b) completely (days) – when residual H2O2 was maintained. At high NOM concentrations (i.e. 25 mg/L NOM or 12.5 mg/L DOC) an additive biofilm control effect was observed for the combined H2O2/UV system compared to UV irradiation alone, after short biofilm incubation times (<24 h). This effect was H2O2 concentration dependent and can be explained by the high organic content of these water samples, whereby an increase in NOM could enhance •OH production and promote the formation of additional reactive oxygen species. In addition, maintaining an appropriate ratio of bacterial surviving conc.: residual H2O2conc. post-treatment could prevent bacterial regrowth and biofilm formation.


2002 ◽  
Vol 46 (11-12) ◽  
pp. 7-12 ◽  
Author(s):  
S.-K. Han ◽  
S.-N. Nam ◽  
J.-W. Kang

This study has been conducted to investigate OH radical monitoring technologies for the advanced oxidation process (AOP). OH radicals can be measured directly or indirectly through electron paramagnetic resonance (EPR), hydrogen peroxide method and probe compounds such as pCBA. Among the various AOPs, we focused on the application of EPR technique for •OH monitoring in the ultrasonic irradiation process. EPR method is a valuable tool and has a high sensitivity for radical measuring. Our study was performed with 20 kHz ultrasonic processor in 20 ml DMPO (1 mM) solution. The amount of DMPO-OH adduct with hyperfine constants aN = aH = 1.49 mT and g-value 2.0054, coincided with those of the DMPO-OH adduct depends on the reaction time of the sonication. Also, we have found that at least, •OH was accumulated by 2 × 10−10 M for 10 min sonication, when 60% of the initial amount was destroyed through •OH monitoring using a probe compound. With these results, we could assume that recombination of •OH to form hydrogen peroxide occurs at the interfacial region.


2019 ◽  
Vol 34 (4) ◽  
pp. 365-375 ◽  
Author(s):  
Abraham Amenay Zewde ◽  
Lingling Zhang ◽  
Zifu Li ◽  
Emanuel Alepu Odey

Abstract Nowadays the use of conventional wastewater treatment methods is becoming increasingly challenging mainly due to the presence of organic matter in wastewater. Therefore, an emerging technology is needed to deal with these highly concentrated and toxic non-biodegradable organic matters. In the last few decades, advanced oxidation process (AOP) has emerged to treat wastewaters discharged from industries. Recently, researchers have shown interest to use the application of ultrasound (US) in photocatalysis, i.e. sonophotocatalysis, to improve the performance of the treatment process in the degradation of organic and inorganic contaminants in aqueous streams. Sonophotocatalysis is the combination of the use of ultraviolet (UV) and US.


2019 ◽  
Vol 36 (1) ◽  
pp. 323-329
Author(s):  
Brenda Borbón ◽  
Mercedes T. Oropeza Guzmán ◽  
Shui W. Lin Ho ◽  
Gerardo Aguirre Hernandez

2018 ◽  
Vol 4 (6) ◽  
pp. 773-782 ◽  
Author(s):  
Dayang Wang ◽  
Lirong Cheng ◽  
Mingming Wang ◽  
Xuezhen Zhang ◽  
Dong Xue ◽  
...  

The effects of sulfate radical-mediated advanced oxidation processes with transition metal and energy activation methods were investigated during effluent organic matter (EfOM) degradation.


Sign in / Sign up

Export Citation Format

Share Document