Role of Nanoscale Hydroxyapatite in Disease Suppression of Fusarium-Infected Tomato

Author(s):  
Chuanxin Ma ◽  
Qingqing Li ◽  
Weili Jia ◽  
Heping Shang ◽  
Jian Zhao ◽  
...  
Author(s):  
Rishi Kumar Verma ◽  
Manisha Sachan ◽  
Kanchan Vishwakarma ◽  
Neha Upadhyay ◽  
Rohit Kumar Mishra ◽  
...  

2009 ◽  
Vol 75 (12) ◽  
pp. 4162-4174 ◽  
Author(s):  
Patrice de Werra ◽  
Maria Péchy-Tarr ◽  
Christoph Keel ◽  
Monika Maurhofer

ABSTRACT The rhizobacterium Pseudomonas fluorescens CHA0 promotes the growth of various crop plants and protects them against root diseases caused by pathogenic fungi. The main mechanism of disease suppression by this strain is the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT). Direct plant growth promotion can be achieved through solubilization of inorganic phosphates by the production of organic acids, mainly gluconic acid, which is one of the principal acids produced by Pseudomonas spp. The aim of this study was to elucidate the role of gluconic acid production in CHA0. Therefore, mutants were created with deletions in the genes encoding glucose dehydrogenase (gcd) and gluconate dehydrogenase (gad), required for the conversion of glucose to gluconic acid and gluconic acid to 2-ketogluconate, respectively. These enzymes should be of predominant importance for rhizosphere-colonizing biocontrol bacteria, as major carbon sources provided by plant root exudates are made up of glucose. Our results show that the ability of strain CHA0 to acidify its environment and to solubilize mineral phosphate is strongly dependent on its ability to produce gluconic acid. Moreover, we provide evidence that the formation of gluconic acid by CHA0 completely inhibits the production of PLT and partially inhibits that of DAPG. In the Δgcd mutant, which does not produce gluconic acid, the enhanced production of antifungal compounds was associated with improved biocontrol activity against take-all disease of wheat, caused by Gaeumannomyces graminis var. tritici. This study provides new evidence for a close association of gluconic acid metabolism with antifungal compound production and biocontrol activity in P. fluorescens CHA0.


2021 ◽  
pp. 263-274
Author(s):  
Kanchan Kumar ◽  
Gaurav Pal ◽  
Anand Verma ◽  
Satish Kumar Verma

2005 ◽  
Vol 85 (5) ◽  
pp. 557-577 ◽  
Author(s):  
B. C. Ball ◽  
I. Bingham ◽  
R. M. Rees ◽  
C. A. Watson ◽  
A. Litterick

Increasing concern about the need to provide high-quality food with minimum environmental impact has led to a new interest in crop rotations as a tool to maintain sustainable crop production. We review the role of rotations in the development and preservation of soil structure. After first introducing the types of rotations in current practice and their impact on yield, we assess how soil and crop management in rotations determines soil structure, and in turn how soil structure influences crop growth and yield. We also briefly consider how soil structure might contribute to other beneficial effects of rotations, namely nutrient cycling and disease suppression. Emphasis is given to the influence of crop choice and, where relevant, interaction with tillage system and avoidance of compaction in the improvement and maintenance of soil structure. Crop rotations profoundly modify the soil environment. The sequence of crops in rotation not only influences the removal of nutrients from a soil, but also the return of crop residues, the development and distribution of biopores and the dynamics of microbial communities. These processes contribute to the development of soil structure. We have identified areas where further research is needed to enable the potential benefits of rotations in the management of soil structure to be fully exploited. These include: improved quantitative linkages between soil structure and crop growth, the consequences to soil structure and nutrient cycling of crop residue incorporation, developing natural disease suppression, amelioration of subsoils by crop roots, the fate of carbon deposited by plant roots in soil and the fate of organic nitrogen in soil. Key words: Organic farming, microbial activity, nutrient cycling, compaction, disease suppression, soil structure


1988 ◽  
Vol 7 (3) ◽  
pp. 175-196 ◽  
Author(s):  
Elroy A. Curl ◽  
K. M. Old

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 101
Author(s):  
Liping Huang ◽  
Xiaobin Shi ◽  
Jizhe Shi ◽  
Zhuo Zhang ◽  
Yong Fang ◽  
...  

Transmission of plant pathogenic viruses mostly relies on insect vectors. Plant virus could enhance its transmission by modulating the vector. Previously, we showed that feeding on virus infected plants can promote the reproduction of the sweet potato whitefly, Bemisia tabaci MED (Q biotype). In this study, using a whitefly-Tomato chlorosis virus (ToCV)-tomato system, we investigated how ToCV modulates B. tabaci MED reproduction to facilitate its spread. Here, we hypothesized that ToCV-infected tomato plants would increase B. tabaci MED fecundity via elevated vitellogenin (Vg) gene expression. As a result, fecundity and the relative expression of B. tabaci MED Vg was measured on ToCV-infected and uninfected tomato plants on days 4, 8, 12, 16, 20 and 24. The role of Vg on B. tabaci MED reproduction was examined in the presence and absence of ToCV using dietary RNAi. ToCV infection significantly increased B. tabaci MED fecundity on days 12, 16 and 20, and elevated Vg expression on days 8, 12 and 16. Both ovarian development and fecundity of B. tabaci MED were suppressed when Vg was silenced with or without ToCV infection. These combined results suggest that ToCV infection increases B. tabaci MED fecundity via elevated Vg expression.


1994 ◽  
pp. 330-347 ◽  
Author(s):  
Debbie K. Fujimoto ◽  
David M. Weller ◽  
Linda S. Thomashow

Author(s):  
Zhouqi Cui ◽  
Regan B. Huntley ◽  
Neil Schultes ◽  
Blaire Steven ◽  
Quan Zeng

Flowers secrete nutrient rich exudates that support the growth of an assemblage of microorganisms, including both beneficial and pathogenic members, most of which belong to the phylum Proteobacteria. Given the potential role of the microbiome in plant health, manipulating the microbiome to promote growth of beneficial members holds promise in controlling plant diseases. In this study we inoculated four different bacterial strains that were originally isolated from apple stigmas, alone or in mixtures of increasing complexity, onto apple flowers during bloom. We tested if such treatments would influence fire blight occurrence, a disease caused by Erwinia amylovora, and if we could detect a shift in the structure of the microbiome due to the treatments. We show that various inoculations did influence the occurrence of fire blight, although the level of disease suppression was dependent upon specific bacterial strains. Furthermore, treatments using different strains or strain mixtures predominantly resulted in increased representation of the inoculated strains, suggesting that disease suppression was due to an alteration of the stigma microbiome structure. Compared to treatments with single strains, a Pantoea-Pseudomonas strain mixture produced a homogeneous microbiome structure with less inter-flower variability. Findings from this study suggest the microbiome on the flower stigma can be manipulated through microbial inoculation. Due to flowers’ short life span yet important role in plant disease infection, even a shot-term influence on microbiome composition may result in significant decreases in disease susceptibility.


2012 ◽  
Vol 50 (4) ◽  
pp. 618-624 ◽  
Author(s):  
Rida O. Khastini ◽  
Hiroyuki Ohta ◽  
Kazuhiko Narisawa

Blood ◽  
2010 ◽  
Vol 116 (6) ◽  
pp. 979-987 ◽  
Author(s):  
Juraj Bies ◽  
Marek Sramko ◽  
Joanna Fares ◽  
Michael Rosu-Myles ◽  
Steven Zhang ◽  
...  

AbstractInactivation of p15INK4b, an inhibitor of cyclin-dependent kinases, through DNA methylation is one of the most common epigenetic abnormalities in myeloid leukemia. Although this suggests a key role for this protein in myeloid disease suppression, experimental evidence to support this has not been reported. To address whether this event is critical for premalignant myeloid disorders and leukemia development, mice were generated that have loss of p15Ink4b specifically in myeloid cells. The p15Ink4bfl/fl-LysMcre mice develop nonreactive monocytosis in the peripheral blood accompanied by increased numbers of myeloid and monocytic cells in the bone marrow resembling the myeloproliferative form of chronic myelomonocytic leukemia. Spontaneous progression from chronic disease to acute leukemia was not observed. Nevertheless, MOL4070LTR retrovirus integrations provided cooperative genetic mutations resulting in a high frequency of myeloid leukemia in knockout mice. Two common retrovirus insertion sites near c-myb and Sox4 genes were identified, and their transcript up-regulated in leukemia, suggesting a collaborative role of their protein products with p15Ink4b-deficiency in promoting malignant disease. This new animal model demonstrates experimentally that p15Ink4b is a tumor suppressor for myeloid leukemia, and its loss may play an active role in the establishment of preleukemic conditions.


Sign in / Sign up

Export Citation Format

Share Document