The role of crop rotations in determining soil structure and crop growth conditions

2005 ◽  
Vol 85 (5) ◽  
pp. 557-577 ◽  
Author(s):  
B. C. Ball ◽  
I. Bingham ◽  
R. M. Rees ◽  
C. A. Watson ◽  
A. Litterick

Increasing concern about the need to provide high-quality food with minimum environmental impact has led to a new interest in crop rotations as a tool to maintain sustainable crop production. We review the role of rotations in the development and preservation of soil structure. After first introducing the types of rotations in current practice and their impact on yield, we assess how soil and crop management in rotations determines soil structure, and in turn how soil structure influences crop growth and yield. We also briefly consider how soil structure might contribute to other beneficial effects of rotations, namely nutrient cycling and disease suppression. Emphasis is given to the influence of crop choice and, where relevant, interaction with tillage system and avoidance of compaction in the improvement and maintenance of soil structure. Crop rotations profoundly modify the soil environment. The sequence of crops in rotation not only influences the removal of nutrients from a soil, but also the return of crop residues, the development and distribution of biopores and the dynamics of microbial communities. These processes contribute to the development of soil structure. We have identified areas where further research is needed to enable the potential benefits of rotations in the management of soil structure to be fully exploited. These include: improved quantitative linkages between soil structure and crop growth, the consequences to soil structure and nutrient cycling of crop residue incorporation, developing natural disease suppression, amelioration of subsoils by crop roots, the fate of carbon deposited by plant roots in soil and the fate of organic nitrogen in soil. Key words: Organic farming, microbial activity, nutrient cycling, compaction, disease suppression, soil structure

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1153 ◽  
Author(s):  
Qianxi Shen ◽  
Risheng Ding ◽  
Taisheng Du ◽  
Ling Tong ◽  
Sien Li

Water shortage is a main limitation of crop growth and yield in drought northwest China, which is an important area of seed maize growth. Plastic film mulch is widely adopted to reduce soil evaporation (E) and conserve water resources, which changes evapotranspiration (ET) and its components, E and transpiration (Tr) and crop growth. The AquaCrop model, one of widely used crop models powered by water, can well simulate crop ET components and growth. However, there are few studies that examine ET partitioning and growth with and without plastic film mulch. The calibrated AquaCrop model was used to partition ET and simulate growth of seed maize with and without plastic film mulch in a drought region of northwest China in 2014 and 2015. The AquaCrop model can well simulate canopy cover curve (CC), and the dynamic and accumulated courses of ET and ET components. Plastic film mulch could advance the growth stage of seed maize and reduce seasoned ET. The initial stage with plastic film mulch was 37–42 days, while it was 46–48 days for no-mulch. Plastic film mulch increased Tr by 14.16% and 14.48% and significantly decreased E by 57.25% and 34.28% in 2014 and 2015, respectively, resulting in the reduction of seasonal total ET. Plastic film mulch increased averaged mid-season crop coefficient for transpiration (Kc Tr) by 0.88% and decreased soil evaporation coefficient (Ke) by 62.50%. Collectively, the results suggest that, in comparison with no-mulch, plastic film mulch advanced crop growth, and decreased total ET and increased Tr related with crop production, i.e., improve water use effectiveness.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 297
Author(s):  
Rosa Francaviglia ◽  
Jorge Álvaro-Fuentes ◽  
Claudia Di Bene ◽  
Lingtong Gai ◽  
Kristiina Regina ◽  
...  

In the European Union, various crop diversification systems such as crop rotation, intercropping and multiple cropping, as well as low-input management practices, have been promoted to sustain crop productivity while maintaining environmental quality and ecosystem services. We conducted a data analysis to identify the benefits of crop associations, alternative agricultural practices and strategies in four selected regions of Europe (Atlantic, Boreal, Mediterranean North and Mediterranean South) in terms of crop production (CP). The dataset was derived from 54 references with a total of 750 comparisons and included site characteristics, crop information (diversification system, crop production, tillage and fertilization management) and soil parameters. We analyzed each effect separately, comparing CP under tillage management (e.g., conventional tillage vs. no tillage), crop diversification (e.g., monoculture vs. rotation), and fertilization management (e.g., mineral fertilization vs. organic fertilization). Compared with conventional tillage (CT), CP was higher by 12% in no tillage (NT), in fine- and medium-textured soils (8–9%) and in arid and semiarid sites located in the Mediterranean Region (24%). Compared to monoculture, diversified cropping systems with longer crop rotations increased CP by 12%, and by 12% in soils with coarse and medium textures. In relation to fertilization, CP was increased with the use of slurry (40%), and when crop residues were incorporated (39%) or mulched (74%). Results showed that conversion to alternative diversified systems through the use of crop rotations, with NT and organic fertilization, results in a better crop performance. However, regional differences related to climate and soil-texture-specific responses should be considered to target local measures to improve soil management.


Author(s):  
Ciro A. Rosolem ◽  
Antonio P. Mallarino ◽  
Thiago A. R. Nogueira

AbstractPotassium (K) is found in plants as a free ion or in weak complexes. It is easily released from living or decomposing tissues, and it should be considered in fertilization programs. Several factors affect K cycling in agroecosystems, including soil and fertilizer K contributions, plant K content and exports, mineralization rates from residues, soil chemical reactions, rainfall, and time. Soil K+ ions can be leached, remain as exchangeable K, or migrate to non-exchangeable forms. Crop rotations that include vigorous, deep-rooted cover crops capable of exploring non-exchangeable K in soil are an effective strategy for recycling K and can prevent leaching below the rooting zone in light-textured soils. The amount of K released by cover crops depends on biomass production. Potassium recycled with non-harvested components of crops also varies greatly. Research with maize, soybean, and wheat has shown that 50–60% of K accumulated in vegetative tissues is released within 40–45 days. A better understanding of K cycling would greatly improve the efficacy of K management for crop production. When studying K cycling in agricultural systems, it is important to consider: (1) K addition from fertilizers and organic amendments; (2) K left in residues; (3) K partitioning differences among species; (4) soil texture; (5) soil pools that act as temporary sources or sinks for K. In this chapter, the role of cash and cover crops and organic residues on K cycling are explored to better understand how these factors could be integrated into making K fertilizer recommendations.


2021 ◽  
Vol 25 (04) ◽  
pp. 751-760
Author(s):  
Weiping Yan

In order to promote the comprehensive production capacity and yield of farmland soil, the effects of subsoil tillage on soil structure, root activity, photosynthetic characteristics, dry matter accumulation, yield and water use through long-term positioning research in semi-arid areas were studied. This study was started in 2011 and investigated in the 2015–2016 research cycle. The experiment was conducted with five treatments including 30 cm subsoiling (SS-30) and 40 cm subsoiling (SS-40) before spring sowing, 30 cm (AS-30) and 40 cm (SS-40) between rows after autumn harvest and no subsoiling (CK). The effects of subsoiling on soil properties, crop growth, yield and water use of maize in semi-arid areas were investigated. The results showed that subsoiling significantly reduced the penetration resistance and bulk density of soil, and significantly increased the soil moisture content from subsoiling to the surface. Subsoiling increased GSand Ci, Tr, Pnand WUE in maize plants, and significantly increased root activity. Subsoiling significantly increased dry weight of aboveground part and root, significantly decreased root shoot ratio, and significantly increased WUE per plant. Subsoiling significantly increased 100 grain weight, yield and WUE of population. Subsoiling can effectively improve the soil structure, enhance the water storage capacity of the soil in arid areas, delay water loss, improve root activity, net photosynthetic rate, dry matter accumulation and WUE, and promote crop growth and yield of maize. Subsoiling in autumn has the best effect on soil improvement. Increasing the subsoiling depth properly can improve their effects, which will gradually less with the passage of time.© 2021 Friends Science Publishers


2009 ◽  
Vol 13 (10) ◽  
pp. 2003-2021 ◽  
Author(s):  
M. Ouessar ◽  
A. Bruggeman ◽  
F. Abdelli ◽  
R. H. Mohtar ◽  
D. Gabriels ◽  
...  

Abstract. In many arid countries, runoff water-harvesting systems support the livelihood of the rural population. Little is known, however, about the effect of these systems on the water balance components of arid watersheds. The objective of this study was to adapt and evaluate the GIS-based watershed model SWAT (Soil Water Assessment Tool) for simulating the main hydrologic processes in arid environments. The model was applied to the 270-km2 watershed of wadi Koutine in southeast Tunisia, which receives about 200 mm annual rain. The main adjustment for adapting the model to this dry Mediterranean environment was the inclusion of water-harvesting systems, which capture and use surface runoff for crop production in upstream subbasins, and a modification of the crop growth processes. The adjusted version of the model was named SWAT-WH. Model evaluation was performed based on 38 runoff events recorded at the Koutine station between 1973 and 1985. The model predicted that the average annual watershed rainfall of the 12-year evaluation period (209 mm) was split into ET (72%), groundwater recharge (22%) and outflow (6%). The evaluation coefficients for calibration and validation were, respectively, R2 (coefficient of determination) 0.77 and 0.44; E (Nash-Sutcliffe coefficient) 0.73 and 0.43; and MAE (Mean Absolute Error) 2.6 mm and 3.0 mm, indicating that the model could reproduce the observed events reasonably well. However, the runoff record was dominated by two extreme events, which had a strong effect on the evaluation criteria. Discrepancies remained mainly due to uncertainties in the observed daily rainfall and runoff data. Recommendations for future research include the installation of additional rainfall and runoff gauges with continuous data logging and the collection of more field data to represent the soils and land use. In addition, crop growth and yield monitoring is needed for a proper evaluation of crop production, to allow an economic assessment of the different water uses in the watershed.


2002 ◽  
Vol 42 (6) ◽  
pp. 887 ◽  
Author(s):  
P. S. Carberry ◽  
H. Meinke ◽  
P. L. Poulton ◽  
J. N. G. Hargreaves ◽  
A. J. Snell ◽  
...  

Recent reports in Australia and elsewhere have attributed enhanced crop yields to the presence of tree windbreaks on farms. One hypothesis for this observation is that, by reducing wind speed, windbreaks influence crop water and energy balances resulting in lower evaporative demand and increased yield. This paper is the second in a series aimed at developing and using crop and micrometeorological modelling capabilities to explore this hypothesis. Specifically, the objectives of this paper are to assist the interpretation of recent field experimentation on windbreak impacts and to quantify the potential benefits and the likelihood of windbreak effects on crop production through an economic analysis of crop yields predicted for the historical climate record at selected sites in Australia. The APSIM systems model was specified to simulate crop growth under the environmental changes induced by windbreaks and subsequently used to simulate the potential benefits on crop production at 2 actual windbreak sites and 17 hypothetical sites around Australia. With the actual windbreak sites, APSIM closely simulated measured crop growth and yield in open-field conditions. However, neither site demonstrated measurable windbreak impacts and APSIM simulations confirmed that such effects would have been either non-existent or masked by experimental variability in the years under study. For each year of the long-term climate record at 17 sites, APSIM simulated yields of relevant crops for transects behind hypothetical windbreaks that provided protection against all wind. When wind protection from all directions is assumed, average simulated yield increases at 5 H (height of windbreak) ranged from 0.2% for maize at Atherton to 24.6% for wheat grown at Dalby, resulting in gross margin changes of �$14.79/ha.crop and $24.13/ha.crop, respectively, for a 10 m high windbreak and 100 ha paddock and assuming a 20% yield loss due to tree competition in the 1.0�3.5 H section. Averaged across all sites and crops, the simulations predicted a yield advantage of 8.6% at 5 H for protection from wind in any direction, resulting in an average gross margin loss of �$0.60/ha.crop. At the 8 sites with available data for wind direction, and assuming protection only from wind originating within a 90� arc perpendicular to a hypothetical windbreak which was optimally orientated at each site, average simulated yield increases at 5 H ranged from 1.0% for wheat at Orange to 8.6% for wheat grown at Geraldton. For a 10 m high windbreak, 100 ha paddock and an assumed 20% yield loss in the 1.0�3.5 H section, the average result across all sites and crops was a 4.7% yield advantage at 5 H and an average gross margin loss of �$2.49/ha.crop. In conclusion, APSIM simulation and economic analyses indicated that yield benefits from microclimate changes can at least partly offset the opportunity costs of positioning tree windbreaks on farms.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 165
Author(s):  
Robert P. Larkin ◽  
C. Wayne Honeycutt ◽  
Timothy S. Griffin ◽  
O. Modesto Olanya ◽  
Zhongqi He

Cropping systems and management practices that improve soil health may greatly enhance crop productivity. Four different potato cropping systems designed to address specific management goals of soil conservation (SC), soil improvement (SI), disease suppression (DS), and a status quo (SQ) standard rotation, along with a non-rotation (PP) control, were evaluated for their effects on potato crop growth, nutrient, and yield characteristics under both irrigated and non-irrigated (rainfed) conditions in field trials in Maine, USA, from 2004 to 2010. Both cropping system and irrigation significantly (p < 0.05) affected most potato crop parameters associated with growth and yield. All rotations increased tuber yield relative to the non-rotation PP control, and the SI system, which included yearly compost amendments, resulted in overall higher yields and a higher percentage of large-size tubers than all other systems with no irrigation (increases of 14 to 90%). DS, which contained disease-suppressive green manures and cover crops, produced the highest yields overall under irrigation (increases of 11 to 35%). Irrigation increased tuber yields in all cropping systems except SI (average increase of 27–37%). SI also resulted in significant increases in leaf area duration and chlorophyll content (as indicators of photosynthetic potential) and root and shoot biomass relative to other cropping systems, particularly under non-irrigated conditions. SI also resulted in higher shoot and tuber tissue concentrations of N, P, and K, but not most micronutrients. Overall, cropping systems that incorporate management practices such as increased rotation length and the use of cover crops, green manures, reduced tillage, and particularly, organic amendments, can substantially improve potato crop growth and yield. Irrigation also substantially increased growth and yield under normal field conditions in Maine, but SI, with its large organic amendments, was essentially a substitute for irrigation, producing comparable results without irrigation.


2014 ◽  
Vol 24 (6) ◽  
pp. 637-644 ◽  
Author(s):  
Jeffrey P. Mitchell ◽  
Anil Shrestha ◽  
Karen Klonsky ◽  
Tom A. Turini ◽  
Kurt J. Hembree

Despite the worldwide importance of overhead, mechanized irrigation for crop production, the potential of this technology has been poorly studied in California. Field studies were conducted at Five Points, CA, in 2010 and 2012 to compare the effects of overhead irrigation (OH) and drip irrigation (DR) on transplanted tomato (Solanum lycopersicum) crop growth and yield. Similar amounts of water were applied to both systems in each year to match crop evapotranspiration demands. Crop growth measured by percent canopy coverage and aboveground biomass accumulation were similar between the OH and DR systems early in the growing season in both years but were lower in the OH system during the second half of each season. Tomato yield was 38% greater in 2012 than in 2010 and averaged over the 2 years, 48% higher in the DR than in the OH systems, respectively, due presumably to the higher soil water evaporation losses of the OH system relative to the DR system and also, we propose, to the ability of the drip system to very precisely apply in-season fertigations directly to the crop root zone while OH fertigations were applied at the soil surface and over a greater area. Soluble solids concentration of fruit in 2010 was 5.99% for the DR system and 6.65% for the OH system providing further evidence of water stress in the OH tomatoes. Production costs associated with transitioning from a subsurface drip tomato crop to a sprinkler or surface drip-irrigated crop such as onion (Allium cepa) or garlic (Allium sativum) could be $130 to $420 per acre lower with the OH system compared with the drip system, if yields were maintained. Because operation and labor costs of OH systems are typically lower than those of DR systems, further research on OH irrigation of tomato is warranted to address the shortcomings of OH management that this study has identified.


HortScience ◽  
2009 ◽  
Vol 44 (2) ◽  
pp. 408-412 ◽  
Author(s):  
Yim F. So ◽  
Martin M. Williams ◽  
Jerald K. Pataky

Knowledge of cultivar-specific information on crop tolerance, the ability of the crop to endure competitive stress from weeds, has garnered recent interest in organic crop production. Twenty-five commercial sweet corn hybrids from nine seed companies were grown in the presence and absence of wild-proso millet (Panicum miliaceum L.) to 1) quantify tolerance in crop growth and yield to weed interference; 2) determine associations between tolerance in crop growth and yield; and 3) identify hybrids differing in tolerance to weed interference. Despite large differences in canopy architecture among hybrids, crop height and leaf uprightness were minimally affected by weed interference. In contrast, wild-proso millet interference reduced ear number 11% to 98% and ear mass 24% to 82% depending on the hybrid. The ability of a hybrid to make small growth adjustments in the presence of wild-proso millet appeared to have no relationship to yield tolerance. The least competitive hybrids were ‘ACX1413’, ‘Optimum’, ‘Quickie’, ‘Spring Treat’, and ‘Sugar Buns’. The most competitive hybrids were ‘Code128’, ‘Coho’, ‘El Toro’, ‘EX 8716622’, and ‘Legacy’. Although some exceptions were observed, in general, the longer-maturity processing hybrids were more competitive with wild-proso millet than the earlier-maturing fresh market hybrids.


Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.


Sign in / Sign up

Export Citation Format

Share Document