Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites

2017 ◽  
Vol 51 (21) ◽  
pp. 12164-12174 ◽  
Author(s):  
Yi Liang ◽  
Xikun Liu ◽  
Michael A. Singletary ◽  
Kai Wang ◽  
Timothy E. Mattes
2021 ◽  
pp. 1-11
Author(s):  
Amna Aqeel ◽  
Zahid Hussain ◽  
Qurat-Ul-Ain Aqeel ◽  
Javaria Zafar ◽  
Naureen Ehsan ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6305
Author(s):  
Xiaosen Li ◽  
Yakui Chen ◽  
Xianyuan Du ◽  
Jin Zheng ◽  
Diannan Lu ◽  
...  

The study applied microbial molecular biological techniques to show that 2.5% to 3.0% (w/w) of diesel in the soil reduced the types and number of bacteria in the soil and destroyed the microbial communities responsible for the nitrogen cycle. In the meantime, the alkane degradation gene alkB and polycyclic aromatic hydrocarbons (PAHs) degradation gene nah evolved in the contaminated soil. We evaluated four different remediation procedures, in which the biostimulation-bioaugmentation joint process reached the highest degradation rate of diesel, 59.6 ± 0.25% in 27 days. Miseq sequencing and quantitative polymerase chain reaction (qPCR) showed that compared with uncontaminated soil, repaired soil provides abundant functional genes related to soil nitrogen cycle, and the most significant lifting effect on diesel degrading bacteria γ-proteobacteria. Quantitative analysis of degrading functional genes shows that degrading bacteria can be colonized in the soil. Gas chromatography-mass spectrometry (GC-MS) results show that the components remaining in the soil after diesel degradation are alcohol, lipids and a small amount of fatty amine compounds, which have very low toxicity to plants. In an on-site remediation experiment, the diesel content decreased from 2.7% ± 0.3 to 1.12% ± 0.1 after one month of treatment. The soil physical and chemical properties returned to normal levels, confirming the practicability of the biosimulation-bioaugmentation jointed remediation process.


2021 ◽  
Vol 38 (1) ◽  
pp. 160-165
Author(s):  
Z.M. Usman ◽  
M.A. Said ◽  
F.A. Shehu ◽  
K. Abdussalam ◽  
T.M. Abdulrazak ◽  
...  

This work is aimed at isolating and identifying phenol-degrading bacteria from oil-contaminated sites. Five soil samples from three auto-mechanic workshops within Katsina metropolis were collected. The samples were analyzed by selective enrichment technique, which resulted in the isolation of four bacterial species. The species were further subjected to the Vitek 2 compact microbiological system analysis. Cupriavidus pauculus, Pontoea spp, Proteus mirabilis 1 and Proteus mirabilis 2 were identified. Result from the present study showed that the bacteria could utilize phenol as their carbon source. Proteus mirabilis 1 and Proteus mirabilis 2 showed lower phenol degradation potential, under similar conditions. Cupriavidus pauculus and Pontoea sp. showed significant increases (p<0.05) in their optical densities. The optical density increment is strongly correlated with increase in colony forming units of the bacteria. This study further showed that the isolates could tolerate high phenol concentrations and may serve as strong putative isolates in bioremediation of phenol-contaminated sites.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
E. N. Melekhina ◽  
E. S. Belykh ◽  
M. Yu. Markarova ◽  
A. A. Taskaeva ◽  
E. E. Rasova ◽  
...  

AbstractThe present comprehensive study aimed to estimate the aftermath of oil contamination and the efficacy of removing the upper level of polluted soil under the conditions of the extreme northern taiga of northeastern European Russia. Soil samples from three sites were studied. Two sites were contaminated with the contents of a nearby sludge collector five years prior to sampling. The highly contaminated upper soil level was removed from one of them. The other was left for self-restoration. A chemical analysis of the soils was conducted, and changes in the composition of the soil zoocoenosis and bacterial and fungal microbiota were investigated. At both contaminated sites, a decrease in the abundance and taxonomic diversity of indicator groups of soil fauna, oribatid mites and collembolans compared to the background site were found. The pioneer eurytopic species Oppiella nova, Proisotoma minima and Xenyllodes armatus formed the basis of the microarthropod populations in the contaminated soil. A complete change in the composition of dominant taxonomic units was observed in the microbiota, both the bacterial and fungal communities. There was an increase in the proportion of representatives of Proteobacteria and Actinobacteria in polluted soils compared to the background community. Hydrocarbon-degrading bacteria—Alcanivorax, Rhodanobacter ginsengisoli, Acidobacterium capsulatum, and Acidocella—and fungi—Amorphotheca resinae abundances greatly increased in oil-contaminated soil. Moreover, among both bacteria and fungi, a sharp increase in the abundance of uncultivated organisms that deserve additional attention as potential oil degraders or organisms with a high resistance to oil contamination were observed. The removal of the upper soil level was partly effective in terms of decreasing the oil product concentration (from approximately 21 to 2.6 g/kg of soil) and preventing a decrease in taxonomic richness but did not prevent alterations in the composition of the microbiota or zoocoenosis.


Sign in / Sign up

Export Citation Format

Share Document