scholarly journals Influence of Setback Distance on Antibiotics and Antibiotic Resistance Genes in Runoff and Soil Following the Land Application of Swine Manure Slurry

2020 ◽  
Vol 54 (8) ◽  
pp. 4800-4809 ◽  
Author(s):  
Maria C. Hall ◽  
Noelle A. Mware ◽  
John E. Gilley ◽  
Shannon L. Bartelt-Hunt ◽  
Daniel D. Snow ◽  
...  
2020 ◽  
Vol 712 ◽  
pp. 136505 ◽  
Author(s):  
Renys E. Barrios ◽  
Himanshu K. Khuntia ◽  
Shannon L. Bartelt-Hunt ◽  
John E. Gilley ◽  
Amy M. Schmidt ◽  
...  

Author(s):  
Maria C. Hall ◽  
Jon Duerschner ◽  
John E. Gilley ◽  
Amy M. Schmidt ◽  
Shannon L. Bartelt-Hunt ◽  
...  

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ishi Keenum ◽  
Robert K. Williams ◽  
Partha Ray ◽  
Emily D. Garner ◽  
Katharine F. Knowlton ◽  
...  

Abstract Background Research is needed to delineate the relative and combined effects of different antibiotic administration and manure management practices in either amplifying or attenuating the potential for antibiotic resistance to spread. Here, we carried out a comprehensive parallel examination of the effects of small-scale (> 55 °C × 3 days) static and turned composting of manures from dairy and beef cattle collected during standard antibiotic administration (cephapirin/pirlimycin or sulfamethazine/chlortetracycline/tylosin, respectively), versus from untreated cattle, on “resistomes” (total antibiotic resistance genes (ARGs) determined via shotgun metagenomic sequencing), bacterial microbiota, and indicator ARGs enumerated via quantitative polymerase chain reaction. To gain insight into the role of the thermophilic phase, compost was also externally heated to > 55 °C × 15 days. Results Progression of composting with time and succession of the corresponding bacterial microbiota was the overarching driver of the resistome composition (ANOSIM; R = 0.424, p = 0.001, respectively) in all composts at the small-scale. Reduction in relative abundance (16S rRNA gene normalized) of total ARGs in finished compost (day 42) versus day 0 was noted across all conditions (ANOSIM; R = 0.728, p = 0.001), except when externally heated. Sul1, intI1, beta-lactam ARGs, and plasmid-associated genes increased in all finished composts as compared with the initial condition. External heating more effectively reduced certain clinically relevant ARGs (blaOXA, blaCARB), fecal coliforms, and resistome risk scores, which take into account putative pathogen annotations. When manure was collected during antibiotic administration, taxonomic composition of the compost was distinct according to nonmetric multidimensional analysis and tet(W) decayed faster in the dairy manure with antibiotic condition and slower in the beef manure with antibiotic condition. Conclusions This comprehensive, integrated study revealed that composting had a dominant effect on corresponding resistome composition, while little difference was noted as a function of collecting manure during antibiotic administration. Reduction in total ARGs, tet(W), and resistome risk suggested that composting reduced some potential for antibiotic resistance to spread, but the increase and persistence of other indicators of antibiotic resistance were concerning. Results indicate that composting guidelines intended for pathogen reduction do not necessarily provide a comprehensive barrier to ARGs or their mobility prior to land application and additional mitigation measures should be considered.


2018 ◽  
Vol 64 (3) ◽  
pp. 201-208 ◽  
Author(s):  
Andrew Scott ◽  
Yuan-Ching Tien ◽  
Craig F. Drury ◽  
W. Daniel Reynolds ◽  
Edward Topp

The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.


2020 ◽  
Author(s):  
Honghong Guo ◽  
jie gu ◽  
Xiaojuan Wang ◽  
Zilin Song ◽  
Xun Qian ◽  
...  

Abstract Background: The proliferation of antibiotic resistance genes (ARGs) in compost and their horizontal transfer to human pathogenic bacteria (HPB) may lead to the failure of human antibiotics. However, the antibiotic resistome in compost has not been comprehensively characterized. This study used a metagenomic approach to obtain new insights into the effects of oxytetracycline (OTC) and copper (Cu) on the antibiotic resistome during swine manure composting and the risks posed to human health. Results: The results showed that composting reduced the abundances and diversity of ARGs and HPB in swine manure. In total, 289 ARG subtypes and 19 ARG types were detected in the samples with abundances ranging from 1.08 ´ 10 –1 to 9.39 ´ 10 –1 copies/16S rRNA, which mainly encoded tetracycline, aminoglycoside, and macrolide–lincosamide–streptogramin (MLS) resistance genes. The application of OTC and Cu, especially the combined application, exacerbated the compost resistome risk scores and specific ARG subtypes responded differently. Tetracycline, multidrug, and MLS resistance genes mainly affected resistance profiles of HPB throughout the composting process. HPB and intI1 had significant positive effects on determining the ARG profiles during the composting process, and the co-selective effect of heavy metals may increase the abundances of ARGs via strong positive effects on intI1 . In addition, the effect of mobile genetic elements on the horizontal gene transfer of ARGs should not be ignored. Conclusions: This study of the antibiotic resistome in compost indicates the need for effective regulation of the misuse of livestock and poultry feed additives in order to minimize the spread of the antibiotic resistome in agro-ecosystems and decrease the potential risk to public health. Keywords: Antibiotic resistome; Composting; Metagenome; Pathogenic host; Swine manure


Sign in / Sign up

Export Citation Format

Share Document