The Aromatic Amine pKa Determines the Affinity for Citrate-Coated Gold Nanoparticles: In Situ Observation via Hot Spot-Normalized Surface-Enhanced Raman Spectroscopy

2019 ◽  
Vol 6 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Haoran Wei ◽  
Qishen Huang ◽  
Peter J. Vikesland
RSC Advances ◽  
2016 ◽  
Vol 6 (65) ◽  
pp. 60152-60159 ◽  
Author(s):  
Zhiyun Zhang ◽  
Huiyuan Guo ◽  
Yingqing Deng ◽  
Baoshan Xing ◽  
Lili He

A surface enhanced Raman spectroscopic (SERS) mapping technique was applied to qualitatively detect and characterize gold nanoparticles on and in spinach leaves in situ.


2013 ◽  
Vol 15 (34) ◽  
pp. 14196 ◽  
Author(s):  
Xiaoqian Ren ◽  
Enzhong Tan ◽  
Xiufeng Lang ◽  
Tingting You ◽  
Li Jiang ◽  
...  

Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 145 ◽  
Author(s):  
Luisa Mandrile ◽  
Andrea Giovannozzi ◽  
Alessio Sacco ◽  
Gianmario Martra ◽  
Andrea Rossi

Flexible and transparent substrates are emerging as low cost and easy-to-operate support for surface-enhanced Raman spectroscopy (SERS). In particular, in situ SERS detection approach for surface characterization in transmission modality can be efficiently employed for non-invasive analysis of non-planar surfaces. Here we propose a new methodology to fabricate a homogenous, transparent, and flexible SERS membrane by the assistance of a thin TiO2 porous layer deposited on the PDMS surface, which supports the uniform loading of gold nanoparticles over large area. The substrate was first characterized for homogeneity, sensitivity and repeatability using a model molecule for SERS, i.e., 7-mercapto-4-methylcoumarin. Satisfactory intra-substrate uniformity and inter-substrates repeatability was achieved, showing an RSD of 10%, and an analytical sensitivity down to 10 nM was determined with an EF of 3.4 × 105 ± 0.4 × 105. Furthermore, SERS detection of pyrimethanil (PMT), a commonly employed pesticide in crops for human consumption, was performed in situ, exploiting the optical transparency of the device, using both model surfaces and non-flat bio-samples. PMT contamination at the phytochemical concentration levels corresponding to commonly used infield doses was successfully detected on the surface of the yellow Ficus benjiamina leaves, supporting the use of this substrate for food safety in-field application.


2017 ◽  
Vol 19 (40) ◽  
pp. 27570-27579 ◽  
Author(s):  
Fumiya Sugimura ◽  
Nanami Sakai ◽  
Tetsuya Nakamura ◽  
Masashi Nakamura ◽  
Katsuyoshi Ikeda ◽  
...  

In situ vibrational spectra of Pt oxides that cannot be measured with IR spectroscopy have been studied on the low index planes of Pt using surface enhanced Raman spectroscopy with bare Au nanoparticles (NPSERS).


Nanophotonics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1529-1540
Author(s):  
Xianwu Xiu ◽  
Liping Hou ◽  
Jing Yu ◽  
Shouzhen Jiang ◽  
Chonghui Li ◽  
...  

Abstract Highly efficient plasmon-driven catalysis and excellent surface-enhanced Raman spectroscopy (SERS) performance are proportional to the square of the local electromagnetic field (hot spot). However, a proven way to realize the enhancement in intensity and density of “hot spot” still needs to be investigated. Here, we report on multilayered Ag nanoparticle (Ag NP)/graphene coupled to an underlying Cu film system (MAgNP-CuF) which can be used as an effective SERS substrates realizing ultra-sensitive detection for toxic molecules and in situ monitoring the plasmon-driven reaction for p-nitrothiophenol (PNTP) to p,p′-dimercaptobenzene (DMAB) conversion. The mechanism of ultra-sensitive SERS response and catalytic reaction is investigated via Ag NP/graphene layer-dependent experiments combined with theoretical simulations. The research found that the intensity and density of “hot spot” can be effectively manipulated by the number of plasmonic layers, and the bottom Cu film could also reflect the scattered and excitation beam and would further enhance the Raman signals. Moreover, the MAgNP-CuF exhibits outstanding performance in stability and reproducibility. We believe that this concept of multilayered plasmonic structures would be widely used not only in the field of SERS but also in the wider research in photocatalysis.


Sign in / Sign up

Export Citation Format

Share Document