Nanofluids of Kaolinite and Silica in Low Saline Seawater (LowSal) with and without Surfactant: Interfacial Tension and Wettability Alteration of Oil–Water–Rock System for Low Salinity-Enhanced Oil Recovery

Author(s):  
Uma Sankar Behera ◽  
Jitendra S. Sangwai
2012 ◽  
Vol 1473 ◽  
Author(s):  
Ernesto Lopez-Chavez ◽  
Luis Silvestre Zamudio-Rivera ◽  
Jose Manuel Martinez-Magadan ◽  
Eduardo Buenrostro-Gonzalez ◽  
Raúl Hernández-Altamirano

ABSTRACTZwitterionic liquid (ZL) molecules are considered among the surfactant molecular species used in enhanced oil recovery (EOR). The surface activity of asphaltenes (ASP) is crucial for establishing reservoir rock wettability, which impacts enhanced oil recovery (EOR) process. The key to a successful EOR formulation is to carefully select the components that provide ultra-low interfacial tension (IFT) under reservoir conditions. Achieving ultra-low IFT greatly reduces capillary forces that trap oil. The objective of this work is the theoretical study of the influence of a class of germinal zwitterionic liquid on interfacial tension or changes on wettability of the oil-rock system under reservoir conditions. The ZL molecule used in this study was designed by Zamudio et al; while the asphaltene model was originally proposed by Buenrostro-González. Methods of molecular mechanics and dynamics were used in order to calculate interaction energies of all systems. The results indicate that the ZL molecule adheres more strongly to the limestone-rock than the asphaltene molecule does. In addition, our results suggest that the ion-pair formation is the dominant wettability alteration mechanism.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 626
Author(s):  
Nurul Afiqah Mohd Mokhtar ◽  
Hoe Guan Beh ◽  
Kean Chuan Lee

Recently, a non-invasive method of injecting magnetic/dielectric nanofluids into the oil reservoir was used for oil recovery application. The use of magnetic nanofluids in Enhanced Oil Recovery (EOR) has been reported to improve oil recovery. It is believed that the magnetic properties of nanoparticles (NPs) have a direct influence on the viscosity and wettability of nanofluid, and on oil-water interfacial tension (IFT). Thus, Mn0.5Zn0.5Fe2O4 (MnZn) ferrites may be a good candidate to be used in nanofluids for wettability alteration and oil-water IFT reduction due to their excellent magnetic properties, such as a high initial permeability and low magnetic losses. Therefore, this work investigated the potential of MnZn ferrite NPs to alter viscosity, wettability, and oil-water IFT. MnZn Ferrite NPs have been synthesized by a sol-gel auto-combustion process. The effects of calcination temperature varying from 300 °C to 700 °C on the phase formation, microstructures such as surface morphology, and magnetic characterizations were studied. MnZn ferrite nanofluids were prepared using synthesized MnZn NPs that dispersed into brine along with sodium dodecylbenzenesulfonate (SDBS) as a dispersant, and their effects on the wettability and oil-water IFT were studied. X-ray diffraction (XRD) measurements revealed that MnZn ferrite calcined at 300 °C and 400 °C were single phase. The average crystallite size calculated through Scherrer’s equation differed from 32.0 to 87.96 nm. The results showed that the nanofluid with MnZn particles calcined at 300 °C is the best nanofluid in terms of IFT reduction and base nanofluid’s wettability alteration. Moreover, the overall results proved that nanofluid with MnZn ferrite NPs can alter the wettability of base nanofluid, oil-nanofluid IFT, and nanofluid viscosity. This study provides insights towards a better understanding of the potential application of MnZn Ferrite nanofluids to Wettability Alteration and IFT Reduction in Enhanced Oil Recovery.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2018 ◽  
Vol 124 (2) ◽  
Author(s):  
Hassan Soleimani ◽  
Mirza Khurram Baig ◽  
Noorhana Yahya ◽  
Leila Khodapanah ◽  
Maziyar Sabet ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1073 ◽  
Author(s):  
Goshtasp Cheraghian ◽  
Sara Rostami ◽  
Masoud Afrand

Nanoparticles (NPs) are known as important nanomaterials for a broad range of commercial and research applications owing to their physical characteristics and properties. Currently, the demand for NPs for use in enhanced oil recovery (EOR) is very high. The use of NPs can drastically benefit EOR by changing the wettability of the rock, improving the mobility of the oil drop and decreasing the interfacial tension (IFT) between oil/water. This paper focuses on a review of the application of NPs in the flooding process, the effect of NPs on wettability and the IFT. The study also presents a review of several investigations about the most common NPs, their physical and mechanical properties and benefits in EOR.


SPE Journal ◽  
2018 ◽  
Vol 23 (03) ◽  
pp. 803-818 ◽  
Author(s):  
Mehrnoosh Moradi Bidhendi ◽  
Griselda Garcia-Olvera ◽  
Brendon Morin ◽  
John S. Oakey ◽  
Vladimir Alvarado

Summary Injection of water with a designed chemistry has been proposed as a novel enhanced-oil-recovery (EOR) method, commonly referred to as low-salinity (LS) or smart waterflooding, among other labels. The multiple names encompass a family of EOR methods that rely on modifying injection-water chemistry to increase oil recovery. Despite successful laboratory experiments and field trials, underlying EOR mechanisms remain controversial and poorly understood. At present, the vast majority of the proposed mechanisms rely on rock/fluid interactions. In this work, we propose an alternative fluid/fluid interaction mechanism (i.e., an increase in crude-oil/water interfacial viscoelasticity upon injection of designed brine as a suppressor of oil trapping by snap-off). A crude oil from Wyoming was selected for its known interfacial responsiveness to water chemistry. Brines were prepared with analytic-grade salts to test the effect of specific anions and cations. The brines’ ionic strengths were modified by dilution with deionized water to the desired salinity. A battery of experiments was performed to show a link between dynamic interfacial viscoelasticity and recovery. Experiments include double-wall ring interfacial rheometry, direct visualization on microfluidic devices, and coreflooding experiments in Berea sandstone cores. Interfacial rheological results show that interfacial viscoelasticity generally increases as brine salinity is decreased, regardless of which cations and anions are present in brine. However, the rate of elasticity buildup and the plateau value depend on specific ions available in solution. Snap-off analysis in a microfluidic device, consisting of a flow-focusing geometry, demonstrates that increased viscoelasticity suppresses interfacial pinch-off, and sustains a more continuous oil phase. This effect was examined in coreflooding experiments with sodium sulfate brines. Corefloods were designed to limit wettability alteration by maintaining a low temperature (25°C) and short aging times. Geochemical analysis provided information on in-situ water chemistry. Oil-recovery and pressure responses were shown to directly correlate with interfacial elasticity [i.e., recovery factor (RF) is consistently greater the larger the induced interfacial viscoelasticity for the system examined in this paper]. Our results demonstrate that a largely overlooked interfacial effect of engineered waterflooding can serve as an alternative and more complete explanation of LS or engineered waterflooding recovery. This new mechanism offers a direction to design water chemistry for optimized waterflooding recovery in engineered water-chemistry processes, and opens a new route to design EOR methods.


1987 ◽  
Vol 27 (1) ◽  
pp. 378
Author(s):  
B.F. Towler ◽  
B. Bubela

The Alton Field has produced 1.875 million stock tank barrels of oil and is nearing the end of its primary life. It is proposed to enhance the recovery from the field microbiologically. Surfactant producing bacteria will be injected into the reservoir in order to lower the oil/water interfacial tension and mobilise the remaining oil. Laboratory experiments on artifical cores have demonstrated the viability of this process. This MEOR project will initially be done in a one-well cyclic Huff and Puff program.


Sign in / Sign up

Export Citation Format

Share Document