scholarly journals Sustainable Hydrates for Enhanced Carbon Dioxide Capture from an Integrated Gasification Combined Cycle in a Fixed Bed Reactor

Author(s):  
Mohd Hafiz Abu Hassan ◽  
Farooq Sher ◽  
Bilal Fareed ◽  
Usman Ali ◽  
Ayesha Zafar ◽  
...  
Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement as well as to meet other emission regulations at a relatively low cost. As one of the most important parts, different gasification technologies can greatly influence the performance of the system. This paper develops a model to examine the feasibilities and advantages of using Ultra Superheated Steam (USS) gasification technology in IGCC power plant with carbon dioxide capture and storage (CCS). USS gasification technology converts coal into syngas by the endothermic steam reforming reaction, and the heat required for this reaction is provided by the sensible heat in the ultra superheated steam. A burner utilizes synthetic air (21% O2 and 79% H2O) to burn fuel gas to produce the USS flame for the gasification process. The syngas generated from USS gasification has a higher hydrogen fraction (more than 50%) then other gasification processes. This high ratio of hydrogen is considered to be desired for a “capture-ready” IGCC plant. After gas cleanup and water gas shift reaction, the syngas goes to the Selexol process for carbon dioxide removal. Detailed calculations and analysis are performed to test the performance of USS gasification technology used in IGCC generation systems. Final results such as net output, efficiency penalty for CO2 capture part, and net thermal efficiency are calculated and compared when three different coal types are used. This paper uses published data of USS gasification from previous research at the University of North Dakota. The model also tries to treat the IGCC with carbon dioxide capture system as a whole thermal system, the superheated steam used in USS gasification can be provided by extracting steam from the lower pressure turbine in the Rankine Cycle. The model will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate CO2 capture system into the design concept of the power plant.


2021 ◽  
Vol 2053 (1) ◽  
pp. 012005
Author(s):  
I I Komarov ◽  
O V Zlyvko ◽  
A N Vegera ◽  
B A Makhmutov ◽  
I A Shcherbatov

Abstract Coal-fired steam turbine thermal power plants produce a large part of electricity. These power plants usually have low efficiency and high carbon dioxide emission. An application of combined cycle power plants with coal gasification equipped with carbon capture and storage systems may increase the efficiency and decrease the harmful emission. This paper describes investigation of the oxidizer type in the integrated gasification combined cycle combustion chamber and its influence upon the energy and environmental performance. The integrated gasification combined cycle and oxy-fuel combustion technology allow the carbon dioxide capture and storage losses 58% smaller than the traditional air combustion one. The IGCC with air combustion without and with carbon dioxide capture and storage has 53.54 and 46.61% and with oxy-fuel combustion has 34.94 and 32.67% net efficiency. Together with this the CO2 emission drops down from 89.9 to 10.6 gm/kWh. The integrated coal gasification combined cycle with air oxidizer has the best net efficiency.


Author(s):  
Peng Pei ◽  
Manohar Kulkarni

Integrated Gasification Combined Cycle (IGCC) is believed to be one of the most promising technologies to offer electricity and other de-carbon fuels with carbon capture requirement at a relatively low cost. With the process of carbon dioxide capture, it can also actually meet strict regulations for other pollutants emission. However, the performances can vary depending on what kinds of technologies or processes are used. This paper has developed a model and calculated by using Engineering Equation Solver (EES) program to determine and compare different available technologies and processes. There are four main components in the model: Gasification Island; Gas Cleanup Island; Carbon Dioxide Capture Island and Power Island. Among them, the different options of Gasification Island; and Carbon Dioxide Capture Island are expected to be the most effective factors to influence the performance of the plant. Therefore, different gasification processes are examined in this paper, including Shell, GE (Texaco) and Lurgi. The carbon dioxide capture processes are based on SELEXOL, a physical absorption process, because of the high partial pressure of carbon dioxide in the syngas. A process called “double-absorption” is used for capturing sulfur compounds and carbon dioxide. This paper calculated and compared the net outputs, efficiency penalties for CO2 capture part, and net plant efficiencies for different technologies and processes by using EES program. This model tries to treat the IGCC with carbon dioxide capture part as a whole thermal system, instead of just looking at the capture system alone. Different gasification technologies mentioned above will result in various paths and efficiencies of using steam and waste energy in the system. It will make reasonable use of various waste energies and steams for both mechanical and chemical processes to improve the performance of the plant, and incorporate a CO2 capture system into the design concept of the power plant.


2010 ◽  
Vol 31 (3) ◽  
pp. 145-164 ◽  
Author(s):  
Janusz Kotowicz ◽  
Anna Skorek-osikowska ◽  
Katarzyna Janusz-szymańska

Membrane separation of carbon dioxide in the integrated gasification combined cycle systemsIntegrated gasification combined cycle systems (IGCC) are becoming more popular because of the characteristics, by which they are characterized, including low pollutants emissions, relatively high efficiency of electricity production and the ability to integrate the installation of carbon capture and storage (CCS). Currently, the most frequently used CO2capture technology in IGCC systems is based on the absorption process. This method causes a significant increase of the internal load and decreases the efficiency of the entire system. It is therefore necessary to look for new methods of carbon dioxide capture. The authors of the present paper propose the use of membrane separation. The paper reviews available membranes for use in IGCC systems, indicates, inter alia, possible places of their implementation in the system and the required operation parameters. Attention is drawn to the most important parameters of membranes (among other selectivity and permeability) influencing the cost and performance of the whole installation. Numerical model of a membrane was used, among others, to analyze the influence of the basic parameters of the selected membranes on the purity and recovery ratio of the obtained permeate, as well as to determine the energetic cost of the use of membranes for the CO2separation in IGCC systems. The calculations were made within the environment of the commercial package Aspen Plus. For the calculations both, membranes selective for carbon dioxide and membranes selective for hydrogen were used. Properly selected pressure before and after membrane module allowed for minimization of energy input on CCS installation assuring high purity and recovery ratio of separated gas.


Sign in / Sign up

Export Citation Format

Share Document