Removal of Carbon Dioxide from a Multicomponent Gas Mixture by Absorption Using a Y-Type Microreactor

Author(s):  
Sarah Natacha de Oliveira Almeida Morais ◽  
Ciro Evandro da Silva Lobo ◽  
Carlos Eduardo de Araújo Padilha ◽  
Domingos Fabiano de Santana Souza ◽  
José Roberto de Souza ◽  
...  
2021 ◽  
Vol 83 (3) ◽  
pp. 372-378
Author(s):  
A. A. Sizova ◽  
S. A. Grintsevich ◽  
M. A. Kochurin ◽  
V. V. Sizov ◽  
E. N. Brodskaya

Abstract Grand canonical Monte Carlo simulations were performed to study the occupancy of structure I multicomponent gas hydrates by CO2/CH4, CO2/N2, and N2/CH4 binary gas mixtures with various compositions at a temperature of 270 K and pressures up to 70 atm. The presence of nitrogen in the gas mixture allows for an increase of both the hydrate framework selectivity to CO2 and the amount of carbon dioxide encapsulated in hydrate cages, as compared to the CO2/CH4 hydrate. Despite the selectivity to CH4 molecules demonstrated by N2/CH4 hydrate, nitrogen can compete with methane if the gas mixture contains at least 70% of N2.


1976 ◽  
Vol 41 (6) ◽  
pp. 960-963 ◽  
Author(s):  
R. Scacci

By use of the equations derived herein, a method is outlined to determine the optimum filing sequence and to obtain the maximum possible pressure when two or more pure high-pressure gases are to be transferred to a receiver cylinder in order to prepare a multicomponent gas mixture. The method is valid for any number of gas components, originating from high-pressure storage cyclinders of arbitrary size and pressure and for a receiver cylinder to contain initially one or more of the component gases. Percentage concentrations within 1% of desired are easily obtained with this method.


2001 ◽  
Vol 1 (3) ◽  
pp. 207-213 ◽  
Author(s):  
E. Llobet ◽  
R. Ionescu ◽  
S. Al-Khalifa ◽  
J. Brezmes ◽  
X. Vilanova ◽  
...  

2021 ◽  
pp. 1-26
Author(s):  
Alexander Anatolievich Zlotnik ◽  
Anna Sergeevna Fedchenko

We study a quasi-hydrodynamic system of equations for a homogeneous (with common velocity and temperature) multicomponent gas mixture in the absence of chemical reactions, with a regularizing velocity common for the components. We derive the entropy balance equation with a non-negative entropy production taking into account the diffusion fluxes of the mixture components. In the absence of diffusion fluxes, a system of equations linearized at a constant solution is constructed by a new technique, In the absence of diffusion fluxes, a system of equations linearized on a constant solution is constructed by a new technique. It is reduced to a symmetric form, the L^2-dissipativity of its solutions is proved, and a degeneration (with respect to the densities of the mixture components) of the parabolicity property for the original system is established. Actually, the system has the composite type. The obtained properties strictly reflect its physical correctness and dissipative nature of the quasi-hydrodynamic regularization.


Author(s):  
Д.В. Садин

Статья посвящена обобщению гибридного метода крупных частиц для численного моделирования течений многокомпонентных газовых смесей при наличии границ раздела газов с различными термодинамическими свойствами. Метод относится к алгоритмам сквозного расчета разрывов. Разностная схема является консервативной, однородной и имеет второй порядок аппроксимации по пространству и времени на гладких решениях. Результаты проверки на тестовых задачах в широком диапазоне чисел Маха и отношений газодинамических параметров подтвердили работоспособность метода. Выполнен анализ численных ошибок в окрестности контактных разрывов на сетках различного разрешения, свидетельствующий о сходимости результатов расчета к автомодельным решениям. This paper is devoted to a generalization of a hybrid large-particle method for the numerical simulation of multicomponent gas mixture flows in the presence of gas interfaces with various thermodynamic properties. The method belongs to the class of shock-capturing and interface-capturing algorithms. The employed difference scheme is conservative and uniform and possesses the second order approximation in space and time on smooth solutions. The obtained numerical results show the efficiency of the method in a wide range of Mach numbers and ratios of gas dynamic parameters. The error analysis performed near the contact discontinuities on grids of various resolutions confirms the convergence of numerical results to the self-similar solutions.


Sign in / Sign up

Export Citation Format

Share Document