Velocity Slip Coefficient and the Diffusion Slip Velocity for a Multicomponent Gas Mixture

1971 ◽  
Vol 14 (12) ◽  
pp. 2599 ◽  
Author(s):  
S. K. Loyalka
2019 ◽  
Vol 89 (5) ◽  
pp. 646
Author(s):  
В.М. Жданов

AbstractBarodiffusion in slow flows of a gas mixture is studied with an approximation using hydrodynamic equations of motion for the individual mixture components. It is shown that consideration of the viscous momentum transfer and the contribution of Knudsen layers for the mixture flowing in a channel has a considerable effect on the value of the barodiffusion factor. The relations are obtained for the mean diffusion fluxes of components and for the total flux of the mixture in a circular cylindrical capillary; these relations are valid for moderately small Knudsen numbers used for calculation of the diffusion baroeffect and separation effect when the gas mixture flows in a set of capillaries connecting two volumes. The modification of the relations for the barodiffusion factor (and for the diffusion slip coefficient cross-linked with it) allows interpreting the sign alteration of these effects observed experimentally for some gas mixtures at intermediate Knudsen numbers.


1976 ◽  
Vol 41 (6) ◽  
pp. 960-963 ◽  
Author(s):  
R. Scacci

By use of the equations derived herein, a method is outlined to determine the optimum filing sequence and to obtain the maximum possible pressure when two or more pure high-pressure gases are to be transferred to a receiver cylinder in order to prepare a multicomponent gas mixture. The method is valid for any number of gas components, originating from high-pressure storage cyclinders of arbitrary size and pressure and for a receiver cylinder to contain initially one or more of the component gases. Percentage concentrations within 1% of desired are easily obtained with this method.


2001 ◽  
Vol 1 (3) ◽  
pp. 207-213 ◽  
Author(s):  
E. Llobet ◽  
R. Ionescu ◽  
S. Al-Khalifa ◽  
J. Brezmes ◽  
X. Vilanova ◽  
...  

2021 ◽  
pp. 1-26
Author(s):  
Alexander Anatolievich Zlotnik ◽  
Anna Sergeevna Fedchenko

We study a quasi-hydrodynamic system of equations for a homogeneous (with common velocity and temperature) multicomponent gas mixture in the absence of chemical reactions, with a regularizing velocity common for the components. We derive the entropy balance equation with a non-negative entropy production taking into account the diffusion fluxes of the mixture components. In the absence of diffusion fluxes, a system of equations linearized at a constant solution is constructed by a new technique, In the absence of diffusion fluxes, a system of equations linearized on a constant solution is constructed by a new technique. It is reduced to a symmetric form, the L^2-dissipativity of its solutions is proved, and a degeneration (with respect to the densities of the mixture components) of the parabolicity property for the original system is established. Actually, the system has the composite type. The obtained properties strictly reflect its physical correctness and dissipative nature of the quasi-hydrodynamic regularization.


Author(s):  
Д.В. Садин

Статья посвящена обобщению гибридного метода крупных частиц для численного моделирования течений многокомпонентных газовых смесей при наличии границ раздела газов с различными термодинамическими свойствами. Метод относится к алгоритмам сквозного расчета разрывов. Разностная схема является консервативной, однородной и имеет второй порядок аппроксимации по пространству и времени на гладких решениях. Результаты проверки на тестовых задачах в широком диапазоне чисел Маха и отношений газодинамических параметров подтвердили работоспособность метода. Выполнен анализ численных ошибок в окрестности контактных разрывов на сетках различного разрешения, свидетельствующий о сходимости результатов расчета к автомодельным решениям. This paper is devoted to a generalization of a hybrid large-particle method for the numerical simulation of multicomponent gas mixture flows in the presence of gas interfaces with various thermodynamic properties. The method belongs to the class of shock-capturing and interface-capturing algorithms. The employed difference scheme is conservative and uniform and possesses the second order approximation in space and time on smooth solutions. The obtained numerical results show the efficiency of the method in a wide range of Mach numbers and ratios of gas dynamic parameters. The error analysis performed near the contact discontinuities on grids of various resolutions confirms the convergence of numerical results to the self-similar solutions.


Sign in / Sign up

Export Citation Format

Share Document