Crystallization Kinetics, Morphology, and Mechanical Properties of Novel Biodegradable Poly(ethylene succinate-co-ethylene suberate) Copolyesters

2016 ◽  
Vol 55 (39) ◽  
pp. 10286-10293 ◽  
Author(s):  
Shoutian Qiu ◽  
Zhiqiang Su ◽  
Zhaobin Qiu
Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 971 ◽  
Author(s):  
Barbara Vigani ◽  
Silvia Rossi ◽  
Giulia Milanesi ◽  
Maria Bonferoni ◽  
Giuseppina Sandri ◽  
...  

The aim of the present work was to investigate how the molecular weight (MW) of poly(ethylene oxide) (PEO), a synthetic polymer able to improve alginate (ALG) electrospinnability, could affect ALG-based fiber morphology and mechanical properties. Two PEO grades, having different MWs (high, h-PEO, and low, l-PEO) were blended with ALG: the concentrations of both PEOs in each mixture were defined so that each h-PEO/l-PEO combination would show the same viscosity at high shear rate. Seven ALG/h-PEO/l-PEO mixtures were prepared and characterized in terms of viscoelasticity and conductivity and, for each mixture, a complex parameter rH/rL was calculated to better identify which of the two PEO grades prevails over the other in terms of exceeding the critical entanglement concentration. Thereafter, each mixture was electrospun by varying the process parameters; the fiber morphology and mechanical properties were evaluated. Finally, viscoelastic measurements were performed to verify the formation of intermolecular hydrogen bonds between the two PEO grades and ALG. rH/rL has been proved to be the parameter that better explains the effect of the electrospinning conditions on fiber dimension. The addition of a small amount of h-PEO to l-PEO was responsible for a significant increase in fiber mechanical resistance, without affecting the nano-scale fiber size. Moreover, the mixing of h-PEO and l-PEO improved the interaction with ALG, resulting in an increase in chain entanglement degree that is functional in the electrospinning process.


2021 ◽  
Author(s):  
Shanshan Zhou ◽  
Yongyan Sun ◽  
Huimin Ma ◽  
Chunfeng Jia ◽  
Xiaoyu Sun ◽  
...  

Abstract A linear diamides derivative (TMC300) as a nucleating agent (NA) was incorporated into biodegradable poly(ethylene succinate) (PES) to investigate effect of TMC300 on nucleation, crystallizability, crystallization kinetics, aggregated structure of PES. TMC300 enhanced significantly crystallizability and crystallization temperature of PES in cooling process at a rate of 10 ℃/min from molten state, indicating that TMC300 exhibits an excellent nucleation effect on PES. IR measurement suggested that TMC300 interacts with amorphous carbonyl and ester group, and crystalline CH2 group of PES via hydrogen bond. Change rate of carbonyl group is comparable to that of C‒C backbone of PES, regardless of the presence or absence of TMC300. Small difference of diffraction peak in WAXD measurement between neat PES and PES/TMC300 is probably attributed to spherulitic orientation on film surface of neat PES, and different spatial arrangements in the same crystal lattice. TMC300 enhanced carbon residue yield of PES/TMC300 composite, probably related to slight flame retardance effect.


Sign in / Sign up

Export Citation Format

Share Document