Novel Biodegradable Graft-Modified Water-Soluble Copolymer Using Acrylamide and Konjac Glucomannan for Enhanced Oil Recovery

2017 ◽  
Vol 56 (4) ◽  
pp. 942-951 ◽  
Author(s):  
Shaohua Gou ◽  
Shiwei Li ◽  
Mingming Feng ◽  
Qin Zhang ◽  
Qinglin Pan ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (64) ◽  
pp. 51549-51558 ◽  
Author(s):  
Shaohua Gou ◽  
Yang He ◽  
Yongtao Ma ◽  
Shan Luo ◽  
Qin Zhang ◽  
...  

A novel antimicrobial copolymer containing sulfitobetaine is studied and has excellent application potential in EOR.


2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Marzieh Riahinezhad ◽  
Laura Romero-Zerón ◽  
Neil McManus ◽  
Alexander Penlidis

2021 ◽  
Vol 874 ◽  
pp. 45-49
Author(s):  
Ihsan Arifin ◽  
Grandprix Thomryes Marth Kadja ◽  
Cynthia L. Radiman

Enhanced Oil Recovery (EOR) is a promising technology for increasing crude oil production, especially from old wells. Polymer flooding is one of the techniques used in EOR in which the water-soluble polymer is added to increase the viscosity of the injected fluid. However, this technique has not been implemented in Indonesia due to the unavailability of locally-synthesized polymers. Therefore, this research aims to synthesize polyacrylamides and their partially-hydrolyzed derivatives and to study the possibility of their utilization for the EOR application. Various polymerization conditions using potassium persulfate (KPS) as initiators have been realized and the resulting polymers were characterized using FTIR spectroscopy and rheology measurement. It was found that higher monomer concentration resulted in higher viscosity-average molecular weight of polyacrylamide. Further study revealed that the hydrolysis of polyacrylamide by alkaline solution significantly increased the viscosity of 1000 ppm solution from 1.5 to 145.40 cP at room temperature, which is comparable to one of the commercial products. These results showed that the simple synthesis and hydrolysis method could be effectively used to produce water-soluble polymers for the EOR application.


2021 ◽  
Vol 11 (4) ◽  
pp. 1905-1913
Author(s):  
Tagwa A. Musa ◽  
Ahmed F. Ibrahim ◽  
Hisham A. Nasr-El-Din ◽  
Anas. M. Hassan

AbstractChemical enhanced oil recovery (EOR) processes are usually used as additives for hydrocarbon production due to its simplicity and relatively reasonable additional production costs. Polymer flooding uses polymer solutions to increase oil recovery by decreasing the water/oil mobility ratio by increasing the viscosity of the displacing water. The commonly used synthetic water-soluble polymer in EOR application is partially hydrolyzed polyacrylamide (HPAM). However, synthetic polymers in general are not attractive because of high cost, environmental concerns, limitation in high temperature, and high-salinity environment. Guar gum is an environmentally friendly natural water-soluble polymer available in large quantities in many countries and widely used in various applications in the oil and gas industry especially in drilling fluids and hydraulic fracturing operations; however, very limited studies investigated on guar as a polymer for EOR and no any study investigated on its uses in high-temperature and high -salinity reservoirs. The objective of this study is to confirm the use of guar gum as a natural polymer for EOR applications in sandstone reservoirs and investigate its applicability for high-temperature and high-salinity reservoirs. The study experimentally investigated rheological characteristics of a natural polymer obtained from guar gum with consideration of high temperature (up to 210 °F) and high salinity (up to 20% NaCl) and tested the guar solution as EOR polymer. The results of this study show that the guar solution can be used as an environmentally friendly polymer to enhance oil recovery. Based on the results, it can be concluded that guar gum shows shear-thinning behavior and strongly susceptible to microbial degradation but also shows a very good properties stability in high temperature and salinity, where in low shear rate case, about 100 cp viscosity can be achieved at 210 °F for polymer prepared in deionized water. Guar polymer shows good viscosity in the presence of 20% NaCl where the viscosity is acceptable for temperature less than 190 °F. Also, the flooding experiment shows that the recovery factor can be increased by 16%.


2018 ◽  
Author(s):  
Saud N. Alhussinan ◽  
Hamdan Q. Alyami ◽  
Naif B. Alqahtani ◽  
Abdulrahman A. AlQuraishi

2015 ◽  
Vol 39 (10) ◽  
pp. 7805-7814 ◽  
Author(s):  
Shaohua Gou ◽  
Shan Luo ◽  
Tongyi Liu ◽  
Peng Zhao ◽  
Yang He ◽  
...  

We report here a novel imidazoline functionalized hydrophobically associating copolymer that exhibits excellent rheological properties and outstanding potential for enhanced oil recovery.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Nanjun Lai ◽  
Xiaoping Qin ◽  
Zhongbin Ye ◽  
Qin Peng ◽  
Yan Zhang ◽  
...  

A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA),N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy,1H NMR spectroscopy,13C NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). The viscosity retention rate of the hyperbranched polymer was 22.89% higher than that of the AM/AA copolymer (HPAM) at 95°C, and the viscosity retention rate was 8.17%, 12.49%, and 13.68% higher than that of HPAM in 18000 mg/L NaCl, 1800 mg/L CaCl2, and 1800 mg/L MgCl2·6H2O brine, respectively. The hyperbranched polymer exhibited higher apparent viscosity (25.2 mPa·s versus 8.1 mPa·s) under 500 s−1shear rate at 80°C. Furthermore, the enhanced oil recovery (EOR) of 1500 mg/L hyperbranched polymer solutions was up to 23.51% by the core flooding test at 80°C.


2014 ◽  
Vol 132 (2) ◽  
Author(s):  
Shaohua Gou ◽  
Ting Yin ◽  
Zhongbin Ye ◽  
Wenchao Jiang ◽  
Cheng Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document