Rate-Limiting Step of Epoxidation Reaction of the Oxoiron(IV) Porphyrin π-Cation Radical Complex: Electron Transfer Coupled Bond Formation Mechanism

Author(s):  
Yuri Ishimizu ◽  
Zhifeng Ma ◽  
Masahiko Hada ◽  
Hiroshi Fujii
2018 ◽  
Vol 6 (47) ◽  
pp. 24358-24366 ◽  
Author(s):  
Hao Li ◽  
Huan Shang ◽  
Yuchen Shi ◽  
Rositsa Yakimova ◽  
Mikael Syväjärvi ◽  
...  

Preferential exposure of Si-face of SiC will mechanistically shift the rate limiting step of water oxidation from sluggish proton-coupled electron transfer on C-face to a more energy-favorable electron transfer.


1988 ◽  
Vol 550 (1 Cytochrome Ox) ◽  
pp. 161-166 ◽  
Author(s):  
PAOLO SARTI ◽  
GIOVANNI ANTONINI ◽  
RANCESCO MALATESTA ◽  
BEATRICE VALLONE ◽  
MAURIZIO BRUNORI

2009 ◽  
Vol 131 (5) ◽  
pp. 1632-1633 ◽  
Author(s):  
Hui Zhu ◽  
Fernando R. Clemente ◽  
K. N. Houk ◽  
Matthew P. Meyer

2021 ◽  
Author(s):  
Georg Kastlunger ◽  
Lei Wang ◽  
Nitish Govindarajan ◽  
Hendrik H. Heenen ◽  
Stefan Ringe ◽  
...  

Utilizing electrochemical conversion of CO(2) into hydrocarbons and oxygenates is envisioned as a promising path towards closing the carbon cycle in modern technology. To this day, however, the exact reaction mechanisms towards the plethora of single and multi-carbon products on Cu electrodes are still disputed. This uncertainty even extends to the rate-limiting step of the respective reactions. Since multi-carbon products do not show a dependence on the electrolyte pH in neutral and alkaline media, CO dimerization on the Cu surface has been proposed as the rate-limiting step. However, other elementary steps would lead to the same pH dependence, namely the proton-electron transfer to *CO followed by subsequent coupling or the protonation of the *OCCO dimer. The pH dependence of methane production on the other hand suggests that the rate limiting step is located beyond the first proton-electron transfer to *CO. In order to conclusively identify the rate limiting steps in CO reduction, we analyzed the mechanisms on the basis of constant potential DFT calculations, CO reduction experiments on Cu at varying pH values (3 - 13) and fundamental rate theory. We find that, even in acidic media, the reaction rate towards multi-carbon products is nearly unchanged on an SHE potential scale, which indicates that its rate limiting step does not involve a proton donor. Hence, we deduce that the rate limiting step can indeed only consist of the coupling of two CO molecules on the surface, both in acidic and alkaline conditions. For methane, on the other hand, the rate-limiting step changes with the electrolyte pH from the first protonation step in acidic/neutral conditions to a later step in alkaline conditions. Finally, based on an in-depth kinetic analysis, we conclude that the pathway towards CH4 involving a surface combination of *CO and *H is unlikely, since it is unable to reproduce the measured current densities and Tafel slopes.


1999 ◽  
Vol 64 (10) ◽  
pp. 1641-1653 ◽  
Author(s):  
Jaromír Mindl ◽  
Jaromír Kaválek ◽  
Helena Straková ◽  
Vojeslav Štěrba

The reaction kinetics of acetamide O-(4-nitrophenoxycarbonyl)oxime have been studied in aqueous buffers at pH 2-11. At pH > 9, the pH dependence of kobs is linear with slope 1, the cyclisation to 3-methyl-1,2,4-oxadiazol-5(4H)-one and 4-nitrophenol being the only reaction. At pH < 7.5, the only reaction is the hydrolysis giving 4-nitrophenol and acetamidoxime. The dependence of kobs on pH has been used to determine the rate equation and to propose the reaction mechanism. The cyclisation kinetics of substituted benzamide O-(phenoxycarbonyl)oximes have been studied in the pH range from 9.25 to 11. The reaction mechanism has been proposed based on the ρ constants found. In the first reaction step, the proton is split off from the NH2 group; the subsequent, rate-limiting step involves simultaneous N-C bond formation and C-O bond splitting.


Sign in / Sign up

Export Citation Format

Share Document