scholarly journals Correction to Copper(II) Complexes of l-Arginine as Netropsin Mimics Showing DNA Cleavage Activity in Red Light

2019 ◽  
Vol 58 (19) ◽  
pp. 13502-13503
Author(s):  
Ashis K. Patra ◽  
Tuhin Bhowmick ◽  
Sovan Roy ◽  
Suryanarayanarao Ramakumar ◽  
Akhil R. Chakravarty
2019 ◽  
Vol 58 (14) ◽  
pp. 9514-9514
Author(s):  
Ashis K. Patra ◽  
Tuhin Bhowmick ◽  
Suryanarayanarao Ramakumar ◽  
Akhil R. Chakravarty

2010 ◽  
Vol 39 (7) ◽  
pp. 1807 ◽  
Author(s):  
Debojyoti Lahiri ◽  
Sovan Roy ◽  
Sounik Saha ◽  
Ritankar Majumdar ◽  
Rajan R. Dighe ◽  
...  

2007 ◽  
Vol 46 (22) ◽  
pp. 9030-9032 ◽  
Author(s):  
Ashis K. Patra ◽  
Tuhin Bhowmick ◽  
Suryanarayanarao Ramakumar ◽  
Akhil R. Chakravarty

2009 ◽  
Vol 48 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Ashis K. Patra ◽  
Tuhin Bhowmick ◽  
Sovan Roy ◽  
Suryanarayanarao Ramakumar ◽  
Akhil R. Chakravarty

2021 ◽  
Vol 36 ◽  
pp. 127834
Author(s):  
Koichi Kato ◽  
Yoshimi Ichimaru ◽  
Yoshinori Okuno ◽  
Yoshihiro Yamaguchi ◽  
Wanchun Jin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia McGillick ◽  
Jessica R. Ames ◽  
Tamiko Murphy ◽  
Christina R. Bourne

AbstractType II toxin-antitoxin systems contain a toxin protein, which mediates diverse interactions within the bacterial cell when it is not bound by its cognate antitoxin protein. These toxins provide a rich source of evolutionarily-conserved tertiary folds that mediate diverse catalytic reactions. These properties make toxins of interest in biotechnology applications, and studies of the catalytic mechanisms continue to provide surprises. In the current work, our studies on a YoeB family toxin from Agrobacterium tumefaciens have revealed a conserved ribosome-independent non-specific nuclease activity. We have quantified the RNA and DNA cleavage activity, revealing they have essentially equivalent dose-dependence while differing in requirements for divalent cations and pH sensitivity. The DNA cleavage activity is as a nickase for any topology of double-stranded DNA, as well as cleaving single-stranded DNA. AtYoeB is able to bind to double-stranded DNA with mid-micromolar affinity. Comparison of the ribosome-dependent and -independent reactions demonstrates an approximate tenfold efficiency imparted by the ribosome. This demonstrates YoeB toxins can act as non-specific nucleases, cleaving both RNA and DNA, in the absence of being bound within the ribosome.


2011 ◽  
Vol 46 (9) ◽  
pp. 4537-4547 ◽  
Author(s):  
Verasuntharam M. Manikandamathavan ◽  
Royapuram P. Parameswari ◽  
Thomas Weyhermüller ◽  
Hannah R. Vasanthi ◽  
Balachandran Unni Nair

Sign in / Sign up

Export Citation Format

Share Document