Characterization of Non-volatile Oxidation Products Formed from Triolein in a Model Study at Frying Temperature

2021 ◽  
Vol 69 (11) ◽  
pp. 3466-3478
Author(s):  
Sílvia Petronilho ◽  
Bruna Neves ◽  
Tânia Melo ◽  
Sara Oliveira ◽  
Eliana Alves ◽  
...  
2013 ◽  
Vol 4 (7) ◽  
pp. 49-54
Author(s):  
Elahaj Babiker Mohamed ◽  
Shehab Naglaa Ahmed ◽  
Ali Heyam Saad

Lipids ◽  
2006 ◽  
Vol 41 (6) ◽  
pp. 615-622 ◽  
Author(s):  
Mônica R. Mazalli ◽  
Alexandra C. H. F. Sawaya ◽  
Marcos N. Eberlin ◽  
Neura Bragagnolo

2015 ◽  
Vol 1 (2) ◽  
pp. 6-10 ◽  
Author(s):  
Catherine A. Gordon ◽  
Jianhuai Ye ◽  
Arthur W.H. Chan

Secondary Organic Aerosol (SOA) forms in the atmosphere when semi-volatile oxidation products from biogenic and anthropogenic hydrocarbons condense onto atmospheric particulate matter. Climate models assume that oxidation products and preexisting organic aerosol form a well-mixed particle and enhance condensation, and, as a result, predict that future increases in anthropogenic primary organic aerosol (POA) will cause a significant increase in SOA. However, recent experiments performed at low humidity (<10%) demonstrate a single-phase particle does not always form, challenging the validity of model assumptions. In this work, we investigate the formation of SOA at atmospherically relevant humidities (55 - 65%) and examine this mixing assumption. We hypothesized that humidity leads to decreased viscosity and shorter mixing timescales, which is favorable for aerosol mixing. Here, α-pinene, a biogenic volatile organic compound is oxidized with ozone in a flow tube reactor in the presence of different organic aerosol seeds. Increased humidity did not enhance SOA formation with erythritol or squalane seed as hypothesized, implying that these compounds do not mix with α-pinene SOA in the range of humidities studied (55 – 65%). Yield enhancements were observed with tetraethylene glycol seed, demonstrating interaction between the SOA and seed. These observations suggest increased humidity does not promote mixing between the oxidation products and POA and highlight the need to fully understand the aerosol phase state in the atmosphere in order to better parameterize SOA formation and accurately predict future changes in air quality.


2017 ◽  
Author(s):  
Andrew Lambe ◽  
Paola Massoli ◽  
Xuan Zhang ◽  
Manjula Canagaratna ◽  
John Nowak ◽  
...  

Abstract. Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent SOA formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NO at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O→ 2NO, followed by the reaction NO + O3 → NO2+ O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3−) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.


2015 ◽  
Vol 15 (20) ◽  
pp. 11807-11833 ◽  
Author(s):  
W. W. Hu ◽  
P. Campuzano-Jost ◽  
B. B. Palm ◽  
D. A. Day ◽  
A. M. Ortega ◽  
...  

Abstract. Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3 ‰) reported in non-IEPOX-derived isoprene-SOA from chamber studies indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a triangle plot of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2, if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass-resolution data are available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.


2019 ◽  
Vol 12 (1) ◽  
pp. 299-311 ◽  
Author(s):  
Andrew T. Lambe ◽  
Jordan E. Krechmer ◽  
Zhe Peng ◽  
Jason R. Casar ◽  
Anthony J. Carrasquillo ◽  
...  

Abstract. Oxidation flow reactors (OFRs) are an emerging technique for studying the formation and oxidative aging of organic aerosols and other applications. In these flow reactors, hydroxyl radicals (OH), hydroperoxyl radicals (HO2), and nitric oxide (NO) are typically produced in the following ways: photolysis of ozone (O3) at λ=254 nm, photolysis of H2O at λ=185 nm, and via reactions of O(1D) with H2O and nitrous oxide (N2O); O(1D) is formed via photolysis of O3 at λ=254 nm and/or N2O at λ=185 nm. Here, we adapt a complementary method that uses alkyl nitrite photolysis as a source of OH via its production of HO2 and NO followed by the reaction NO + HO2 → NO2 + OH. We present experimental and model characterization of the OH exposure and NOx levels generated via photolysis of C3 alkyl nitrites (isopropyl nitrite, perdeuterated isopropyl nitrite, 1,3-propyl dinitrite) in the Potential Aerosol Mass (PAM) OFR as a function of photolysis wavelength (λ=254 to 369 nm) and organic nitrite concentration (0.5 to 20 ppm). We also apply this technique in conjunction with chemical ionization mass spectrometer measurements of multifunctional oxidation products generated following the exposure of α-Pinene to HOx and NOx obtained using both isopropyl nitrite and O3 + H2O + N2O as the radical precursors.


2013 ◽  
Vol 405 (23) ◽  
pp. 7181-7193 ◽  
Author(s):  
Robert Jirásko ◽  
Tomáš Mikysek ◽  
Vitaliy Chagovets ◽  
Ivan Vokřál ◽  
Michal Holčapek

Sign in / Sign up

Export Citation Format

Share Document