Fabrication and Characterization of Quercetagetin-Loaded Nanoparticles Based on Shellac and Quaternized Chitosan: Improvement of Encapsulation Efficiency and Acid and Storage Stabilities

Author(s):  
Hui Zhang ◽  
Jiao Wang ◽  
Xinyu Sun ◽  
Yalan Zhang ◽  
Mengna Dong ◽  
...  
2018 ◽  
Vol 38 (1) ◽  
pp. 23 ◽  
Author(s):  
Retno Ayu Kurniasih ◽  
Lukita Purnamayati ◽  
Ulfah Amalia ◽  
Eko Nurcahya Dewi

Phycocyanin is a source of natural blue dye which can be extracted from Spirulina sp. The main characteristics of phycocyanin are unstable by temperature and pH during processing and storage. Microencapsulation methods could be proposed to protect the phycocyanin from the external effect, where the types and concentration of encapsulant used may affect the characteristics of the result. The aim of this study was to determine the best formulation and characterization of phycocyanin microcapsules from Spirulina sp. with maltodextrin and alginate as an encapsulant. The microcapsules were produced using five different concentrations of alginate in maltodextrin, namely 0%; 0.2%; 0.4%; 0.6%; and 0.8% (w/w). The total encapsulant used was 10% of phycocyanin microparticle solution. The results showed that the increasing concentration of alginate could raise the levels of phycocyanin, moisture content, encapsulation efficiency, bulk density, blue intensity, and particle size, it also improved the morphology of the microcapsules. Phycocyanin microcapsules with alginate concentration of 0.6% and 9.4% maltodextrin had the highest phycocyanin content, encapsulation efficiency, and blue intensity.


Author(s):  
Hoang Tran Dung

Herein, we presents a study on the fabrication and characterization of supercapacitor electrode by 3D printing. A colloidal suspension containing carbon nanotubes (CNTs) and cobalt ferrite nanoparticles (CoFe2O4 NPs) was used as ink. The ink was successfully printed on aluminium substrate using a modified 3D printer followed by solvent evaporation to form a porous CNTs/CoFe2O4 aerogel film. The characterization results showed that the film has porous surface, high electrical conductivity and good electrochemical properties, indicating its promising application as supercapacitor electrode for energy conversion and storage.


2022 ◽  
Vol 02 ◽  
Author(s):  
Tara Emami ◽  
Ali Nazari Shirvan ◽  
Mahmoudreza Jaafari ◽  
Rasool Madani ◽  
Fariba Golchinfar ◽  
...  

Background: Development of antivenom or antidote requires the repetition of immunization of large animals, such as horses and goats, which ultimately releases the IgG immunoglobulin produced in the serum specimen. As snake venom involves a variety of proteins and enzymes getting administered into the animal, this process can inflict significant harm to the animal, therefore choosing carriers that can deliver the least amount of venom could be a safer option for animal immunization Objective: In this research, nanoliposomes were used to encapsulate venom as a protected cargo for immunization. We used two distinct liposomal formulations to entrap the venom: 1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phospho-(1′-rac-glycerol) associated with cholesterol in one formulation and dimethyldioctadecylamonium (Bromide salt) paired with cholesterol in the other. Method: Liposomal formulations prepared by solvent evaporation method and the venom was encapsulated in liposomes and evaluated for size and zeta potential. Meanwhile, encapsulation efficiency, venom release percentage, and phospholipase activity have all been analyzed. Results: The findings revealed that dimethyldioctadecylamonium (Bromide salt) combined with cholesterol had the highest encapsulation efficiency. In this formulation, the venom release rate had a steady-state profile. The lack of phospholipase activity in this formulation may be due to a bromide group in the liposomal structure that could be useful for immunization. Conclusion: Liposomal formulations, which do not have the active site of the snake venom enzymes, could be used for venom encapsulation.


2019 ◽  
Vol 35 (4) ◽  
pp. 475-484
Author(s):  
SHIVA ARUN ◽  
◽  
PRABHA BHARTIYA ◽  
AMREEN NAZ ◽  
SUDHEER RAI ◽  
...  

2019 ◽  
Vol 139 (11) ◽  
pp. 375-380
Author(s):  
Harutoshi Takahashi ◽  
Yuta Namba ◽  
Takashi Abe ◽  
Masayuki Sohgawa

2015 ◽  
Vol 135 (11) ◽  
pp. 474-475
Author(s):  
Koji Sugano ◽  
Ryoji Hiraoka ◽  
Toshiyuki Tsuchiya ◽  
Osamu Tabata

Sign in / Sign up

Export Citation Format

Share Document