PGK1 Promoter Library for the Regulation of Acetate Ester Production in Saccharomyces cerevisiae during Chinese Baijiu Fermentation

2018 ◽  
Vol 66 (28) ◽  
pp. 7417-7427 ◽  
Author(s):  
Dan-yao Cui ◽  
Yu Zhang ◽  
Jia Xu ◽  
Cui-ying Zhang ◽  
Wei Li ◽  
...  
2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Jarryd Lamour ◽  
Chun Wan ◽  
Mingming Zhang ◽  
Xinqing Zhao ◽  
Riaan Den Haan

ABSTRACT To enable Saccharomyces cerevisiae to produce renewable fuels from lignocellulose in a consolidated bioprocess, a heterologous cellulase system must be engineered into this yeast. In addition, inherently low secretion titers and sensitivity to adverse environmental conditions must be overcome. Here, two native S. cerevisiae genes related to yeast stress tolerance, YHB1 and SET5, were overexpressed under transcriptional control of the constitutive PGK1 promoter and their effects on heterologous secretion of Talaromyces emersonii cel7A cellobiohydrolase was investigated. Transformants showed increased secreted enzyme activity that ranged from 22% to 55% higher compared to the parental strains and this did not lead to deleterious growth effects. The recombinant strains overexpressing either YHB1 or SET5 also demonstrated multi-tolerant characteristics desirable in bioethanol production, i.e. improved tolerance to osmotic and heat stress. Quantitative reverse transcriptase PCR analysis in these strains showed decreased transcription of secretion pathway genes. However, decreased unfolded protein response was also observed, suggesting novel mechanisms for enhancing enzyme production through stress modulation. Overexpression of YHB1 in an unrelated diploid strain also enhanced stress tolerance and improved ethanol productivity in medium containing acetic acid. To our knowledge, this is the first demonstration that improved heterologous secretion and environmental stress tolerance could be engineered into yeast simultaneously.


2014 ◽  
Vol 41 (12) ◽  
pp. 1823-1828 ◽  
Author(s):  
Jian Dong ◽  
Haiyan Xu ◽  
Libin Zhao ◽  
Yefu Chen ◽  
Cuiying Zhang ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhães ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae × Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15°C, 15 °Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


LWT ◽  
2019 ◽  
Vol 104 ◽  
pp. 8-15 ◽  
Author(s):  
Irma M.H. van Rijswijck ◽  
Aleksander J. Kruis ◽  
Judith C.M. Wolkers – Rooijackers ◽  
Tjakko Abee ◽  
Eddy J. Smid

2021 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhaes ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae x Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15 C, 15 Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


2017 ◽  
Vol 11 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Ting Yuan ◽  
Yakun Guo ◽  
Junkai Dong ◽  
Tianyi Li ◽  
Tong Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document