saccharomyces eubayanus
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 26)

H-INDEX

10
(FIVE YEARS 5)

2021 ◽  
Vol 2 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhães ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae × Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15°C, 15 °Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1628
Author(s):  
Massimo Iorizzo ◽  
Francesco Letizia ◽  
Gianluca Albanese ◽  
Francesca Coppola ◽  
Angelita Gambuti ◽  
...  

Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.


2021 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhaes ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae x Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15 C, 15 Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mathias Hutzler ◽  
Maximilian Michel ◽  
Oliver Kunz ◽  
Tiina Kuusisto ◽  
Frederico Magalhães ◽  
...  

The successful application of Saccharomyces eubayanus and Saccharomyces paradoxus in brewery fermentations has highlighted the potential of wild Saccharomyes yeasts for brewing, and prompted investigation into the application potential of other members of the genus. Here, we evaluate, for the first time, the brewing potential of Saccharomyces jurei. The newly isolated strain from an ash tree (Fraxinus excelsior) in Upper Bavaria, Germany, close to the river Isar, was used to ferment a 12°P wort at 15°C. Performance was compared directly with that of a reference lager strain (TUM 34/70) and the S. eubayanus type strain. Both wild yeast rapidly depleted simple sugars and thereafter exhibited a lag phase before maltose utilization. This phase lasted for 4 and 10 days for S. eubayanus and S. jurei, respectively. S. eubayanus utilized fully the available maltose but, consistent with previous reports, did not use maltotriose. S. jurei, in contrast, utilized approximately 50% of the maltotriose available, making this the first report of maltotriose utilization in a wild Saccharomyces species. Maltotriose use was directly related to alcohol yield with 5.5, 4.9, and 4.5% ABV produced by Saccharomyces pastorianus, S. jurei, and S. eubayanus. Beers also differed with respect to aroma volatiles, with a high level (0.4 mg/L) of the apple/aniseed aroma ethyl hexanoate in S. jurei beers, while S. eubayanus beers had a high level of phenylethanol (100 mg/L). A trained panel rated all beers as being of high quality, but noted clear differences. A phenolic spice/clove note was prominent in S. jurei beer. This was less pronounced in the S. eubayanus beers, despite analytical levels of 4-vinylguaiacol being similar. Tropical fruit notes were pronounced in S. jurei beers, possibly resulting from the high level of ethyl hexanoate. Herein, we present results from the first intentional application of S. jurei as a yeast for beer fermentation (at the time of submission) and compare its fermentation performance to other species of the genus. Results indicate considerable potential for S. jurei application in brewing, with clear advantages compared to other wild Saccharomyces species.


Author(s):  
Wladimir Mardones ◽  
Carlos A. Villarroel ◽  
Valentina Abarca ◽  
Kamila Urbina ◽  
Tomás A. Peña ◽  
...  

2021 ◽  
Author(s):  
Mathias Hutzler ◽  
Maximilian Michel ◽  
Oliver Kunz ◽  
Tiina Kuusisto ◽  
Frederico Magalhães ◽  
...  

AbstractThe successful application of Saccharomyces eubayanus and Saccharomyces paradoxus in brewery fermentations has highlighted the potential of wild yeast for brewing, and prompted investigation into the application potential of other members of the genus. Here, we evaluate, for the first time, the brewing potential of Saccharomyces jurei. The newly isolated strain from an ash tree (Fraxinus excelsior) in Upper Bavaria, Germany, close to the river Isar, was used to ferment a 12°P wort at 15°C. Performance was compared directly with that of a reference lager strain (TUM 34/70) and the S. eubayanus type strain. Both wild yeast rapidly depleted simple sugars and thereafter exhibited a lag phase before maltose utilization. This phase lasted for 4 and 10 days for S. eubayanus and S. jurei, respectively. S. eubayanus utilized fully the available maltose but, consistent with previous reports, did not use maltotriose. S. jurei, in contrast, utilized approx. 50% of the maltotriose available, making this the first report of maltotriose utilization in a wild Saccharomyces species. Maltotriose use was directly related to alcohol yield with 5.5, 4.9, and 4.5 % ABV produced by S. pastorianus, S. jurei and S. eubayanus. Beers also differed with respect to aroma volatiles, with a high level (0.4 mg/L) of the apple/aniseed aroma ethyl hexanoate in S. jurei beers, while S. eubayanus beers had a high level of phenylethanol (100 mg/L). A trained panel rated all beers as being of high quality, but noted clear differences. A phenolic spice/clove note was prominent in S. jurei beer. This was less pronounced in the S. eubayanus beers, despite analytical levels of 4-vinylguaiacol being similar. Tropical fruit notes were pronounced in S. jurei beers, possibly resulting from the high level of ethyl hexanoate. Herein, we present the successful results of the first intentional application of S. jurei as a yeast for beer fermentation known to us and compare its fermentation performance to other species of the genus. Results indicate considerable potential for S. jurei application in brewing, with clear advantages compared to other wild Saccharomyces species.


Author(s):  
Martina Catallo ◽  
Fabrizio Iattici ◽  
Cinzia Randazzo ◽  
Cinzia Caggia ◽  
Kristoffer Krogerus ◽  
...  

The search for novel brewing strains from non-brewing environments represents an emerging trend to increase genetic and phenotypic diversities in brewing yeast culture collections. Another valuable tool is hybridization, where beneficial traits of individual strains are combined in a single organism. This has been used successfully to create de novo hybrids from parental brewing strains by mimicking natural Saccharomyces cerevisiae ale x Saccharomyces eubayanus lager yeast hybrids. Here, we integrated both these approaches to create synthetic hybrids for lager fermentation using parental strains from niches other than beer. Using a phenotype-centered strategy, S. cerevisiae sourdough strains and the S. eubayanus x Saccharomyces uvarum strain NBRC1948 (also referred to as Saccharomyces bayanus) were chosen for their brewing aptitudes. We demonstrated that, in contrast to S. cerevisiae x S. uvarum crosses, hybridization yield was positively affected by time of exposure to starvation, but not by staggered mating. In laboratory-scale fermentation trials at 20°C, one triple S. cerevisiae x S. eubayanus x S. uvarum hybrid showed a heterotic phenotype compared with the parents. In 2L wort fermentation trials at 12°C, this hybrid inherited the ability to consume efficiently maltotriose from NBRC1948 and, like the sourdough S. cerevisiae parent, produced appreciable levels of the positive aroma compounds 3-methylbutyl acetate (banana/pear), ethyl acetate (general fruit aroma) and ethyl hexanoate (green apple, aniseed, and cherry aroma). Based on these evidences, the phenotype-centered approach appears promising for design of de novo lager beer hybrids and may help to diversify aroma profiles in lager beers.


LWT ◽  
2020 ◽  
Vol 134 ◽  
pp. 110183
Author(s):  
Giuseppina Paola Parpinello ◽  
Arianna Ricci ◽  
Barbara Folegatti ◽  
Francesca Patrignani ◽  
Rosalba Lanciotti ◽  
...  

2020 ◽  
Vol 66 (5) ◽  
pp. 336-344
Author(s):  
Peter Vaštík ◽  
Daniela Šmogrovičová ◽  
Valentína Kafková ◽  
Pavol Sulo ◽  
Katarína Furdíková ◽  
...  

Non-Saccharomyces yeast strains Saccharomycodes ludwigii, Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta together with a hybrid yeast strain cross-bred between genetically modified Saccharomyces cerevisiae W303-1A G418R and Saccharomyces eubayanus as well as the parent yeasts of the hybrid were studied for potential use for non-alcoholic beer production. The hybrid yeast, its Saccharomyces cerevisiae W303-1A G418R parent and Saccharomycodes ludwigii were not able to metabolise maltose during Durham tube tests. Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta metabolised maltose, however, showed limited ethanol production. Parameters, volatile and non-volatile organic compounds of beers produced by the studied yeast were analysed and compared to a beer produced by bottom fermented brewer’s yeast Saccharomyces pastorianus.


Sign in / Sign up

Export Citation Format

Share Document