acetate ester
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 13)

H-INDEX

19
(FIVE YEARS 1)

Author(s):  
Shota Isogai ◽  
Akira Nishimura ◽  
Atsushi Kotaka ◽  
Naoyuki Murakami ◽  
Natsuki Hotta ◽  
...  

A variety of the yeast Saccharomyces cerevisiae with intracellular accumulation of isoleucine (Ile) would be a promising strain for developing a distinct kind of sake, a traditional Japanese alcoholic beverage, because Ile-derived volatile compounds have a great impact on the flavor and taste of fermented foods. In this study, we isolated an Ile-accumulating mutant (strain K9-I48) derived from a diploid sake yeast of S. cerevisiae by conventional mutagenesis. Strain K9-I48 carries a novel mutation in the ILV1 gene encoding the His480Tyr variant of threonine deaminase (TD). Interestingly, the TD activity of the His480Tyr variant was markedly insensitive to feedback inhibition by Ile, but was not upregulated by valine, leading to intracellular accumulation of Ile and extracellular overproduction of 2-methyl-1-butanol, a fusel alcohol derived from Ile, in yeast cells. The present study demonstrated for the first time that the conserved histidine residue located in a linker region between two regulatory domains is involved in allosteric regulation of TD. Moreover, sake brewed with strain K9-I48 contained 2-3 times more 2-methyl-1-butanol and 2-methylbutyl acetate than sake brewed with the parent strain. These findings are valuable for the engineering of TD to increase the productivity of Ile and its derived fusel alcohols. IMPORTANCE Fruit-like flavors of isoleucine-derived volatile compounds, 2-methyl-1-butanol (2MB) and its acetate ester, contribute to a variety of the flavors and tastes of alcoholic beverages. Besides its value as aroma components in foods and cosmetics, 2MB has attracted significant attention as second-generation biofuels. Threonine deaminase (TD) catalyzes the first step in isoleucine biosynthesis and its activity is subject to feedback inhibition by isoleucine. Here, we isolated an isoleucine-accumulating sake yeast mutant and identified a mutant gene encoding a novel variant of TD. The variant TD exhibited much less sensitivity to isoleucine, leading to higher production of 2MB as well as isoleucine than the wild-type TD. Furthermore, sake brewed with a mutant yeast expressing the variant TD contained more 2MB and its acetate ester than that brewed with the parent strain. These findings will contribute to the development of superior industrial yeast strains for high-level production of isoleucine and its related fusel alcohols.


2022 ◽  
Vol 11 (1) ◽  
pp. e40111125141
Author(s):  
Laura Cassol Mohr Celuppi ◽  
Ana Paula Capelezzo ◽  
Leticia Bavaresco Cima ◽  
Rubieli Carla Frezza Zeferino ◽  
Micheli Zanetti ◽  
...  

The development of new antimicrobial polymeric materials is in prominence due to its versatility of applications, especially for the manufacture of active packaging food. Cellulose acetate is an example of polymeric material used to this purpose, due to its characteristics of biodegradability and easy processing, in addition its natural origin and no toxicity. Geranyl acetate is an ester derived from geraniol, which has good antimicrobial properties and good thermal stability, which makes it interesting to be applied as an antimicrobial agent, avoiding the trivial and often problematic metallic nanoparticles and also volatile essential oils. In this work, antibacterial and antifungal cellulose acetate films were obtained through the incorporation of geranyl acetate ester (in concentrations of 0.5 and 1.0% v/v), by using the casting technique. This new material was tested against gram-positive and gram-negative bacteria and fungi. Results showed that it is possible to obtain antibacterial and antifungal cellulose acetate films with the incorporation of geranyl acetate ester, with excellent antibacterial activity against gram-positive and gram-negative bacteria and good antifungal activity.


2021 ◽  
Vol 910 (1) ◽  
pp. 012011
Author(s):  
Hussein Lafta Al-Seadi ◽  
Manal Zibari Sabti ◽  
Dhia Ahmad Taain

Abstract The current study aimed to determine the phytochemicals present in the leaf extract of two papaya varieties grown in southern Iraq. The phytochemicals present in the ethanolic extract of papaya leaves were identified using the GC-MS detection system. The results showed the presence of more than thirty phytochemicals in the ethanolic extract of papaya leaves. The main phytochemicals present in papaya leaf extract in terms of their relative abundance are Oleic Acid, Tocopherol, Sitosterol, Neophytadiene, Butyl 9,12,15-octadecatrienoate, n-Hexadecanoic acid, Phytol, Tetramethyl-2-hexadecen, Dasycarpidan-1-methanol, acetate (ester), Campesterol, Squalene, Octadecenoic acid, Stigmasterol and D-Limonene. The present study revealed that the papaya leaf extract was composed of a variety of metabolites and therapeutic active substances, in addition to novel substances. These substances can be isolated and evaluated experimentally to confirm their biological and medicinal activities as well as verify their mechanism of action.


2021 ◽  
Vol 2 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhães ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae × Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15°C, 15 °Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


2021 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Frederico Magalhaes ◽  
Sandra Castillo ◽  
Gopal Peddinti ◽  
Virve Vidgren ◽  
...  

Yeasts in the lager brewing group are closely related and consequently do not exhibit significant genetic variability. Here, an artificial Saccharomyces cerevisiae x Saccharomyces eubayanus tetraploid interspecies hybrid was created by rare mating, and its ability to sporulate and produce viable gametes was exploited to generate phenotypic diversity. Four spore clones obtained from a single ascus were isolated, and their brewing-relevant phenotypes were assessed. These F1 spore clones were found to differ with respect to fermentation performance under lager brewing conditions (15 C, 15 Plato), production of volatile aroma compounds, flocculation potential and temperature tolerance. One spore clone, selected for its rapid fermentation and acetate ester production was sporulated to produce an F2 generation, again comprised of four spore clones from a single ascus. Again, phenotypic diversity was introduced. In two of these F2 clones, the fermentation performance was maintained and acetate ester production was improved relative to the F1 parent and the original hybrid strain. Strains also performed well in comparison to a commercial lager yeast strain. Spore clones varied in ploidy and chromosome copy numbers, and faster wort fermentation was observed in strains with a higher ploidy. An F2 spore clone was also subjected to 10 consecutive wort fermentations, and single cells were isolated from the resulting yeast slurry. These isolates also exhibited variable fermentation performance and chromosome copy numbers, highlighting the instability of polyploid interspecific hybrids. These results demonstrate the value of this natural approach to increase the phenotypic diversity of lager brewing yeast strains.


2021 ◽  
Vol 22 (4) ◽  
pp. 1943
Author(s):  
Jennifer Badura ◽  
Niël van Wyk ◽  
Silvia Brezina ◽  
Isak S. Pretorius ◽  
Doris Rauhut ◽  
...  

Apiculate yeasts belonging to the genus Hanseniaspora are commonly isolated from viticultural settings and often dominate the initial stages of grape must fermentations. Although considered spoilage yeasts, they are now increasingly becoming the focus of research, with several whole-genome sequencing studies published in recent years. However, tools for their molecular genetic manipulation are still lacking. Here, we report the development of a tool for the genetic modification of Hanseniaspora uvarum. This was employed for the disruption of the HuATF1 gene, which encodes a putative alcohol acetyltransferase involved in acetate ester formation. We generated a synthetic marker gene consisting of the HuTEF1 promoter controlling a hygromycin resistance open reading frame (ORF). This new marker gene was used in disruption cassettes containing long-flanking (1000 bp) homology regions to the target locus. By increasing the antibiotic concentration, transformants were obtained in which both alleles of the putative HuATF1 gene were deleted in a diploid H. uvarum strain. Phenotypic characterisation including fermentation in Müller-Thurgau must showed that the null mutant produced significantly less acetate ester, particularly ethyl acetate. This study marks the first steps in the development of gene modification tools and paves the road for functional gene analyses of this yeast.


Author(s):  
Xiaofan Zhang ◽  
Huiyun Wang ◽  
Yangrong Xu ◽  
Mingzhu Luan ◽  
Fenglan Zhao ◽  
...  

: Oleanolic acid can inhibit edema and exhibit obvious inhibitory activity to inflammatory by activating of the pituitary-adrenal cortical system, inhibiting the synthesis or release of PGs, inhibiting endotoxin-mediated release of HMGB1 by endothelial cells or regulating MAPK, PI3K/Akt/NF-κB/ICAM-1/JAK/STAT signaling pathways, etc. In recent years, an increased number of interesting research work has been carried out on the anti-inflammatory activity and mechanisms of OA derivatives, such as acyloxyimino derivative, 3-acetylated derivatives, novel 3,5-disubstituted isoxazoles derivatives, acetate, ester derivatives and oximes derivatives. The review summaries and highlights the update advances on the anti-inflammatory activity and mechanism of OA and its derivatives.


Fermentation ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 50
Author(s):  
Amparo Gamero ◽  
Annereinou Dijkstra ◽  
Bart Smit ◽  
Catrienus de Jong

Traditionally, Saccharomyces species are those used to conduct industrial alcoholic fermentations. Recently, an increasing interest has arisen with respect to the potential of so-called non-conventional yeasts to improve wine and beer aroma profiles, keeping the particular terroir of each region or for the development of craft beers. In this study, the potential of diverse non-conventional yeasts to improve aroma in winemaking and brewing was investigated, testing several pure and mixed culture combinations. In addition, a comparison between microscale and labscale was carried out in order to assess the value of microwine and microbeer as screening tools. The results indicated that non-Saccharomyces yeasts were good candidates to enhance or diversify aroma profiles in alcoholic beverages, especially regarding acetate ester yield and fruity aromas. However, mixed cultures with Saccharomyces spp. are normally required to achieve a successful fermentation. The adjustment of pithing ratios is crucial for this purpose. Microscale is presented as an effective and efficient screening tool to compare different culture combinations, although scaling-up will always be necessary in order to get results closer to real winemaking or brewing processes.


2019 ◽  
Vol 15 ◽  
pp. 1441-1447 ◽  
Author(s):  
Andrea Rodil ◽  
Alexandra M Z Slawin ◽  
Nawaf Al-Maharik ◽  
Ren Tomita ◽  
David O’Hagan

We report the metabolism of the recently introduced α,α-difluoroethyl thioether motif to explore further its potential as a substituent for bioactives discovery chemistry. Incubation of two aryl–SCF2CH3 ethers with the model yeast organism Cunninghamella elegans, indicates that the sulfur of the thioether is rapidly converted to the corresponding sulfoxide, and then significantly more slowly to the sulfone. When the substrate was (p-OMe)PhSCF2CH3, then the resultant (demethylated) phenol sulfoxide had an enantiomeric excess of 60%, and when the substrate was the β-substituted-SCF2CH3 naphthalene, then the enantiomeric excess of the resultant sulfoxide was 54%. There was no evidence of defluorination, unlike the corresponding oxygen ether (p-OMe)PhOCF2CH3, which was converted to the (demethylated) phenol acetate ester during C. elegans incubation. We conclude that the aryl–S–CF2CH3 motif is metabolised in a similar manner to aryl–SCF3, a motif that is being widely explored in discovery chemistry. It is however, significantly less lipophilic than aryl-SCF3 which may offer a practical advantage in tuning overall pharmacokinetic profiles of molecules in development.


Sign in / Sign up

Export Citation Format

Share Document