Vapor-Phase (p, ρ, T, x) Behavior and Virial Coefficients for the Binary Mixture (0.05 Hydrogen + 0.95 Carbon Dioxide) over the Temperature Range from (273.15 to 323.15) K with Pressures up to 6 MPa

2017 ◽  
Vol 62 (9) ◽  
pp. 2973-2981 ◽  
Author(s):  
Mohamed A. Ben Souissi ◽  
Reiner Kleinrahm ◽  
Xiaoxian Yang ◽  
Markus Richter
2021 ◽  
Vol 2119 (1) ◽  
pp. 012144
Author(s):  
E P Raschektaeva ◽  
S V Stankus

Abstract The article presents the investigation of the thermal conductivity of binary mixture R-32/R-125 (75/25) in the gas state. Measurements were taken with a coaxial cylinders method in the temperature range of 305-426 K and the pressure range of 0.1-1.8 MPa. The dependence of thermal conductivity on pressure and temperature was discussed. The equations for thermal conductivity on the dew line and in the ideal gas state were obtained.


2016 ◽  
Vol 62 (1) ◽  
pp. 362-369 ◽  
Author(s):  
Mohamed A. Ben Souissi ◽  
Markus Richter ◽  
Xiaoxian Yang ◽  
Reiner Kleinrahm ◽  
Roland Span

2021 ◽  
Vol 42 (9) ◽  
Author(s):  
Nils von Preetzmann ◽  
Reiner Kleinrahm ◽  
Philipp Eckmann ◽  
Giuseppe Cavuoto ◽  
Markus Richter

AbstractDensities of an air-like binary mixture (0.2094 oxygen + 0.7906 nitrogen, mole fractions) were measured along six isotherms over the temperature range from 100 K to 298.15 K at pressures up to 8.0 MPa, using a low-temperature single-sinker magnetic suspension densimeter. The measurements were carried out at T = (100, 115, and 130) K in the homogeneous gas and liquid region, and at T = (145, 220, and 298.15) K in the supercritical region (critical temperature TC = 132.35 K); in total, we present results for 52 (T, p) state points. The relative expanded combined uncertainty (k = 2) of the experimental densities was estimated to be between 0.03 % and 0.13 %, except for four values near the critical point. The largest error is caused by the magnetic suspension coupling in combination with the mixture component oxygen, which is strongly paramagnetic; the resulting force transmission error is up to 1.1 %. However, this error can be corrected with a proven correction model to an uncertainty contribution in density of less than 0.044 %. Due to a supercritical liquefaction procedure and the integration of a special VLE-cell, it was possible to measure densities in the homogeneous liquid phase without changing the composition of the liquefied mixture. Moreover, saturated liquid and saturated vapor densities were determined at T = (100, 115, and 130) K by extrapolation of the experimental single-phase densities to the saturation pressure. The new experimental results were compared with the mixture model of Lemmon et al. for the system (nitrogen + argon + oxygen) and the GERG-2008 equation of state.


This paper describes the first part of an investigation of the thermodynamic properties of gases and gaseous mixtures undertaken a few years ago at the National Physical Laboratory, with the main object of providing data on the relationship between the properties of mixtures and those of the pure constituents. The virial coefficients of carbon dioxide and ethylene have been determined by the series-expansion method over the range —10 to 200 °C, and the representation of the results by several forms of intermolecular potential has been investigated. In the case of ethylene it appears that the second virial coefficient may be represented accurately in terms of a Lennard-Jones 6:12 potential, the parameters of which are determined. In the corresponding representation for carbon dioxide there is a small but systematic discrepancy and evidence is adduced that this may be rectified by the introduction of a quadrupole interaction term on the lines of the theory developed by Pople. The value of the quadrupole moment suggested by this calculation proves to be in fairly close agreement with a recent direct determination. Work on the virial coefficients of mixtures of the two gases will be described in a further paper.


1961 ◽  
Vol 83 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Jerome L. Novotny ◽  
Thomas F. Irvine

By measuring laminar recovery factors in a high velocity gas stream, experimental determinations were made of the Prandtl number of carbon dioxide over a temperature range from 285 to 450 K and of carbon-dioxide air mixtures at an average temperature of 285 K with a predicted maximum error of 1.5 per cent. Thermal conductivity values were deduced from these Prandtl numbers and compared with literature values measured by other methods. Using intermolecular force constants determined from literature experimental data, viscosities, thermal conductivities, and Prandtl numbers were calculated for carbon-dioxide air mixtures over the temperature range 200 to 1500 deg for mixture ratios from pure air to pure carbon dioxide.


Author(s):  
E. Busillo ◽  
V. I. Savchenko ◽  
V. S. Arutyunov

Abstract A detailed kinetic modeling of the noncatalytic processes of thermal pyrolysis and steam and carbon dioxide reforming of methane revealed almost completely identical kinetics of the methane conversion in these processes. This suggests that, in the temperature range 1400–1800 K, the initial stage of conversion of methane in all these processes is its thermal pyrolysis. The modeling results agree well with the experimental data on methane pyrolysis. For the temperature range examined, the Arrhenius expressions (pre-exponential factors and activation energy) were obtained in the first-order kinetics approximation for the rate of methane conversion in the processes studied. The expressions derived may be useful for making preliminary estimates and carrying out engineering calculations.


Sign in / Sign up

Export Citation Format

Share Document