Room Temperature Hydrolysis of Benzamidines and Benzamidiniums in Weakly Basic Water

2021 ◽  
Vol 86 (19) ◽  
pp. 13762-13767 ◽  
Author(s):  
Li-Juan Yu ◽  
Duncan A. Cullen ◽  
Mahbod Morshedi ◽  
Michelle L. Coote ◽  
Nicholas G. White
Author(s):  
T. Baird ◽  
J.R. Fryer ◽  
S.T. Galbraith

Introduction Previously we had suggested (l) that the striations observed in the pod shaped crystals of β FeOOH were an artefact of imaging in the electron microscope. Contrary to this adsorption measurements on bulk material had indicated the presence of some porosity and Gallagher (2) had proposed a model structure - based on the hollandite structure - showing the hollandite rods forming the sides of 30Å pores running the length of the crystal. Low resolution electron microscopy by Watson (3) on sectioned crystals embedded in methylmethacrylate had tended to support the existence of such pores.We have applied modern high resolution techniques to the bulk crystals and thin sections of them without confirming these earlier postulatesExperimental β FeOOH was prepared by room temperature hydrolysis of 0.01M solutions of FeCl3.6H2O, The precipitate was washed, dried in air, and embedded in Scandiplast resin. The sections were out on an LKB III Ultramicrotome to a thickness of about 500Å.


Author(s):  
Yogita P. Labrath ◽  
Prafulla V. Belge ◽  
Uma G. Kulkarni ◽  
Vilas G. Gaikar

Abstract The turmeric rhizome (Curcuma longa) contains curcuminoids embedded in the starch matrix. It is thus important to target starch hydrolysis to enhance extraction of curcuminoids. In the case of starch hydrolysis, α-amylase is more efficient when the starch is in a gelatinised form than when it is in its natural form. The present work includes hydrolysis of turmeric starch in its natural and gelatinised forms using α-amylase in hydrotrope solution (HS) and scCO2. The optimum rate of starch hydrolysis was obtained using 200 IU cm−3 of α-amylase, at reaction conditions of 6.5 pH at 328 K when 10% w/w of turmeric powder was stirred at 900 rpm in HSs. The hydrolysis in 15 MPa scCO2 at room temperature required a phase modifier and 40 min of residence time (RT). The enzyme treatment of turmeric powder in HSs increased the filtration rate for curcuminoid extraction (gelatinised and native) compared to untreated turmeric powder.


1975 ◽  
Vol 28 (3) ◽  
pp. 673 ◽  
Author(s):  
DJ Collins ◽  
C Lewis ◽  
JM Swan

Treatment of cyclododecane-r-1,c-5,c-9-triyl tris(p-toluenesulphonate) with sodium azide in dimethyl-formamide at 100� for 6 h gave the corresponding cis,cis-triazide which upon hydrogenation or reduction with lithium aluminium hydride gave cyclododecane-r-1,c-5,c-9-triamine, isolated as the tris-salicylidene derivative. Acid hydrolysis of this, removal of the salicylaldehyde, and treatment of the aqueous solution with sodium carbonate and 2,3-dimethoxybenzoyl chloride gave r-1,c-5,c- 9-tris(2,3-dimethoxybenzamido)cyclododecane. ��� Treatment of (E,E,E)-cyclododeca-1,5,9-triene with an excess of acetonitrile and sulphuric acid at room temperature for three days gave 18% of (E,E)-1-acetamidocyclododeca-4,8-diene; no di- or tri-amides were isolated.


1982 ◽  
Vol 37 (3) ◽  
pp. 380-385 ◽  
Author(s):  
G. N. Schrauzer ◽  
Laura A. Hughes ◽  
Norman Strampach

Abstract Colorless alkylmolybdates(VI) of composition R-MoO3-are generated in aqueous solutions by the alkaline hydrolysis of complexes R-Mo(Bpy)(0)2Br(Bpy = 2,2′-bipyridyl, R = CH3 and higher alkyl). At room temperature in alkaline aqueous solution, the new organometallic derivatives of oxomolybdate(VI) are remarkably resistant against Mo-C bond hydrolysis. Decomposition occurs more rapidly on heating, affording unrearranged alkanes according to the eq.: R-MoO3- + OH-→RH + Mo04=. In acidic solutions, the methylmolybdate(VI) species decomposes with the formation of a mixture of methane and ethane while higher alkylmolybdates carrying hydrogen in the β-position relative to molybdenum undergo Mo-C bond heterolysis by way of β-elimina-tion: R-CH2CH2-MoO3 → Mo+4 (aq) + H+ + R-CH = CH2. The Mo-C bond of alkylmolybdates is resistant to oxidants but is very sensitive to cleavage under reducing conditions. Reductive Mo-C bond cleavage occurs particularly rapidly in the presence of thiols and reduced ferredoxin model compounds. The latter reactions simulate the terminal steps of hydrocarbon producing reactions of nitrogenase with alternate substrates such as CN-, R-CN or R-NC, confirming previous mechanistic conclusions concerning the mechanism of nitrogenase action.


2006 ◽  
Vol 11-12 ◽  
pp. 539-542
Author(s):  
Li Dong Gao ◽  
Jian Feng Chen

Titania nanotubes were successfully synthesized by a simple procedure with needle-like CaCO3 as inorganic templates at a room temperature in nonaqueous system. Through the hydrolysis of tetrabutoxytitanium (TBOT), titania crystal nucleus were deposited on the CaCO3 nanoparticles due to heterogeneous nucleation, followed by aggregation condensation on the surface of needle-like CaCO3 cores and removal of CaCO3 to produce hollow titania nanotubes. Its morphological and structural properties were characterized by TEM, SEM, and XRD, respectively. The nanotubes have a uniform tubular hollow structure with one or two big openings ends, the length of about 2.0 μm, the average inner diameters of 100-200 nm, respectively, and a wall thickness of approximately 40 nm. The phase formed was anatase after calcinations at 723 K for 2 h and nanotubes with hollow structure remained their original shapes, and the BET surface area of as-synthesized titania nanotubes was 243.45 m2/g, and decreased to 144.76 m2/g after calcinations


1992 ◽  
Vol 45 (8) ◽  
pp. 1327
Author(s):  
M Dargelos ◽  
ME Borredon ◽  
A Gaset

Dehydrohalogenation of a mixture of glycerol 1,3- and 2,3-dihalohydrins by a strong basic ion-exchange resin (IRA 440 and A 26) at room temperature in an organic medium quantitatively leads to the corresponding epihalohydrin (1a; X = Cl), and (1b; X = Br) in a very short reaction time. Hydrolysis of the epihalohydrin does not occur under these conditions.


2020 ◽  
Vol 36 (6) ◽  
pp. 1209-1216
Author(s):  
Haibin Hu ◽  
Bo Long ◽  
Yifan Jiang ◽  
Shichang Sun ◽  
Ibrahim Lawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document