Competition between a Tetrel and Halogen Bond to a Common Lewis Acid

Author(s):  
Steve Scheiner
Keyword(s):  
Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4939
Author(s):  
Sławomir J. Grabowski

The variety of interactions have been analyzed in numerous studies. They are often compared with the hydrogen bond that is crucial in numerous chemical and biological processes. One can mention such interactions as the halogen bond, pnicogen bond, and others that may be classified as σ-hole bonds. However, not only σ-holes may act as Lewis acid centers. Numerous species are characterized by the occurrence of π-holes, which also may play a role of the electron acceptor. The situation is complicated since numerous interactions, such as the pnicogen bond or the chalcogen bond, for example, may be classified as a σ-hole bond or π-hole bond; it ultimately depends on the configuration at the Lewis acid centre. The disadvantage of classifications of interactions is also connected with their names, derived from the names of groups such as halogen and tetrel bonds or from single elements such as hydrogen and carbon bonds. The chaos is aggravated by the properties of elements. For example, a hydrogen atom can act as the Lewis acid or as the Lewis base site if it is positively or negatively charged, respectively. Hence names of the corresponding interactions occur in literature, namely hydrogen bonds and hydride bonds. There are other numerous disadvantages connected with classifications and names of interactions; these are discussed in this study. Several studies show that the majority of interactions are ruled by the same mechanisms related to the electron charge shifts, and that the occurrence of numerous interactions leads to specific changes in geometries of interacting species. These changes follow the rules of the valence-shell electron-pair repulsion model (VSEPR). That is why the simple classification of interactions based on VSEPR is proposed here. This classification is still open since numerous processes and interactions not discussed in this study may be included within it.


2019 ◽  
Vol 21 (28) ◽  
pp. 15310-15318 ◽  
Author(s):  
Fengxiang Zhou ◽  
Yuan Liu ◽  
Zhaoxu Wang ◽  
Tian Lu ◽  
Qingyuan Yang ◽  
...  

Theoretical studies on the dimers formed by CO with the halides of multivalent astatine as a Lewis-acid center are carried out to examine the typical characteristics of supervalent halogen bonds.


2020 ◽  
Author(s):  
Chang-Sheng Wang ◽  
Sabrina Monaco ◽  
Anh Ngoc Thai ◽  
Md. Shafiqur Rahman ◽  
Chen Wang ◽  
...  

A catalytic system comprised of a cobalt-diphosphine complex and a Lewis acid (LA) such as AlMe3 has been found to promote hydrocarbofunctionalization reactions of alkynes with Lewis basic and electron-deficient substrates such as formamides, pyridones, pyridines, and azole derivatives through site-selective C-H activation. Compared with known Ni/LA catalytic system for analogous transformations, the present catalytic system not only feature convenient set up using inexpensive and bench-stable precatalyst and ligand such as Co(acac)3 and 1,3-bis(diphenylphosphino)propane (dppp), but also display distinct site-selectivity toward C-H activation of pyridone and pyridine derivatives. In particular, a completely C4-selective alkenylation of pyridine has been achieved for the first time. Mechanistic stidies including DFT calculations on the Co/Al-catalyzed addition of formamide to alkyne have suggested that the reaction involves cleavage of the carbamoyl C-H bond as the rate-limiting step, which proceeds through a ligand-to-ligand hydrogen transfer (LLHT) mechanism leading to an alkyl(carbamoyl)cobalt intermediate.


2020 ◽  
Author(s):  
Revannath L. Sutar ◽  
Nikita Erochok ◽  
Stefan Huber

A series of cationic monodentate and bidentate iodo(benz)­imidazolium-based halogen bond (XB) donors were employed as catalysts in a Mukaiyama aldol reaction. While 5 mol% of a monodentate variant showed noticeable activity, a <i>syn</i>-preorganized bidentate XB donor provided a strong performance even with 0.5 mol% loading. In contrast to the very active BAr<sup>F</sup><sub>4</sub> salts, PF<sub>6</sub> or OTf salts were either inactive or showed background reaction. Repetition experiments clearly ruled out a potential hidden catalysis by elemental iodine and demonstrated the stability of our catalyst over three consecutive cycles.


2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2020 ◽  
Author(s):  
Eric Greve ◽  
Jacob D. Porter ◽  
Chris Dockendorff

Dual amine/pi Lewis acid catalyst systems have been reported for intramolecular direct additions of aldehydes/ketones to unactivated alkynes and occasionally alkenes, but related intermolecular reactions are rare and not presently of significant synthetic utility, likely due to undesired coordination of enamine intermediates to the metal catalyst. We reasoned that bulky metal ligands and bulky amine catalysts could minimize catalyst poisoning and could facilitate certain examples of direct intermolecular additions of aldehyde/ketones to alkenes/alkynes. Density Functional Theory (DFT) calculations were performed that suggested that PyBOX-Pt(II) catalysts for alkene/alkyne activation could be combined with MacMillan’s imidazolidinone organocatalyst for aldehyde/ketone activation to facilitate desirable C-C bond formations, and certain reactions were calculated to be more exergonic than catalyst poisoning pathways. As calculated, preformed enamines generated from the MacMillan imidazolidinone did not displace ethylene from a biscationic (<i>t</i>-Bu)PyBOX-Pt<sup>2+</sup>complex, but neither were the desired C-C bond formations observed under several different conditions.


Sign in / Sign up

Export Citation Format

Share Document