Low-Temperature Water Uptake of Individual Marine and Biologically Relevant Atmospheric Particles Using Micro-Raman Spectroscopy

Author(s):  
Liora E. Mael ◽  
Heidi L. Busse ◽  
Gordon Peiker ◽  
Vicki H. Grassian
2009 ◽  
Vol 55 (189) ◽  
pp. 117-122 ◽  
Author(s):  
F. Elif Genceli ◽  
Shinichirou Horikawa ◽  
Yoshinori Iizuka ◽  
Toshimitsu Sakurai ◽  
Takeo Hondoh ◽  
...  

AbstractInclusions affect the behavior of ice, and their characteristics help us understand the formation history of the ice. Recently, a low-temperature magnesium sulfate salt was discovered. This paper describes this naturally occurring MgSO4·11H2O mineral, meridianiite, derived from salt inclusions in sea ice of Lake Saroma, Japan and in Antarctic continental core ice. Its occurrence is confirmed by using micro-Raman spectroscopy to compare Raman spectra of synthetic MgSO4·11H2O with those of the inclusions.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1068
Author(s):  
Alessandro Croce ◽  
Enrico Pigazzi ◽  
Patrizia Fumagalli ◽  
Caterina Rinaudo ◽  
Michele Zucali

Carbonaceous materials (CMs) have been widely used to assess temperatures in sedimentary and metamorphic carbonate rocks. The use of Raman spectroscopy of carbonaceous material (RSCM) is largely devoted to the study of deformed rocks hosted in thrust-tectonic settings. Raman spectroscopy of carbonaceous material successfully allows the study of carbonate rocks at a temperature as high as 650 °C. In this study, a set of carbonate-mylonite rocks (Italian Alps) were investigated using micro-Raman spectroscopy, in order to infer the deformation conditions associated with the Alpine thrusts, expected to occur at T < 350 °C. Micro-Raman spectra were collected using two sources: green (532 nm) and red (632.8 nm) lasers. Several deconvolution procedures and parameters were tested to optimize the collected spectrum morphologies for the laser sources, also in accordance with the low temperature expected. The obtained temperatures highlight two clusters: one at 340–350 °C for the samples collected in the axial part of the Alpine chain, and the other at 200–240 °C for those collected in the external thrust-and-fold belt. These results agree with the independent geological and petrological constraints. Consistent results were obtained using 532 and 632.8 nm laser sources when the appropriate deconvolution approach was used.


1998 ◽  
Author(s):  
I. De Wolf ◽  
G. Groeseneken ◽  
H.E. Maes ◽  
M. Bolt ◽  
K. Barla ◽  
...  

Abstract It is shown, using micro-Raman spectroscopy, that Shallow Trench Isolation introduces high stresses in the active area of silicon devices when wet oxidation steps are used. These stresses result in defect formation in the active area, leading to high diode leakage currents. The stress levels are highest near the outer edges of line structures and at square structures. They also increase with decreasing active area dimensions.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 210
Author(s):  
Caleb Daniel Watson ◽  
Michela Martinelli ◽  
Donald Charles Cronauer ◽  
A. Jeremy Kropf ◽  
Gary Jacobs

Recent studies have shown that appropriate levels of alkali promotion can significantly improve the rate of low-temperature water gas shift (LT-WGS) on a range of catalysts. At sufficient loadings, the alkali metal can weaken the formate C–H bond and promote formate dehydrogenation, which is the proposed rate determining step in the formate associative mechanism. In a continuation of these studies, the effect of Rb promotion on Pt/ZrO2 is examined herein. Pt/ZrO2 catalysts were prepared with several different Rb loadings and characterized using temperature programmed reduction mass spectrometry (TPR-MS), temperature programmed desorption (TPD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), an X-ray absorption near edge spectroscopy (XANES) difference procedure, extended X-ray absorption fine structure spectroscopy (EXAFS) fitting, TPR-EXAFS/XANES, and reactor testing. At loadings of 2.79% Rb or higher, a significant shift was seen in the formate ν(CH) band. The results showed that a Rb loading of 4.65%, significantly improves the rate of formate decomposition in the presence of steam via weakening the formate C–H bond. However, excessive rubidium loading led to the increase in stability of a second intermediate, carbonate and inhibited hydrogen transfer reactions on Pt through surface blocking and accelerated agglomeration during catalyst activation. Optimal catalytic performance was achieved with loadings in the range of 0.55–0.93% Rb, where the catalyst maintained high activity and exhibited higher stability in comparison with the unpromoted catalyst.


Sign in / Sign up

Export Citation Format

Share Document