scholarly journals Determination of the Maturation Status of Dendritic Cells by Applying Pattern Recognition to High-Resolution Images

2020 ◽  
Vol 124 (39) ◽  
pp. 8540-8548
Author(s):  
Michael F. Lohrer ◽  
Yang Liu ◽  
Darrin M. Hanna ◽  
Kang-Hsin Wang ◽  
Fu-Tong Liu ◽  
...  
Author(s):  
C. J. D. Hetherington

Most high resolution images are not directly interpretable but must be compared with simulations based on model atomic structures and appropriate imaging conditions. Typically, the only parameters that are adjusted, in addition to the structure models, are crystal thickness and microscope defocus. Small tilts of the crystal away from the exact zone axis have only rarely been considered. It is shown here that, in the analysis of an image of a silicon twin intersection, the crystal tilt could be accurately estimated and satisfactorily included in the simulations.The micrograph shown in figure 1 was taken as part of an HREM study of indentation-induced hexagonal silicon. In this instance, the intersection of two twins on different habit planes has driven the silicon into hexagonal stacking. However, in order to confirm this observation, and in order to investigate other defects in the region, it has been necessary to simulate the image taking into account the very apparent crystal tilt. The inability to orientate the specimen at the exact [110] zone was influenced by i) the buckling of the specimen caused by strains at twin intersections, ii) the absence of Kikuchi lines or a clearly visible Laue circle in the diffraction pattern of the thin specimen and iii) the avoidance of radiation damage (which had marked effects on images taken a few minutes later following attempts to realign the crystal.) The direction of the crystal tilt was estimated by observing which of the {111} planes remained close to edge-on to the beam and hence strongly imaged. Further refinement of the direction and magnitude of the tilt was done by comparing simulated images to experimental images in a through-focal series. The presence of three different orientations of the silicon lattice aided the unambiguous determination of the tilt. The final estimate of a 0.8° tilt in the 200Å thick specimen gives atomic columns a projected width of about 3Å.


1991 ◽  
Vol 238 ◽  
Author(s):  
Geoffrey H. Campbells ◽  
Wayne E. King ◽  
Stephen M. Foiles ◽  
Peter Gumbsch ◽  
Manfred Rühle

ABSTRACTA (310) twin boundary in Nb has been fabricated by diffusion bonding oriented single crystals and characterized using high resolution electron microscopy. Atomic structures for the boundary have been predicted using different interatomic potentials. Comparison of the theoretical models to the high resolution images has been performed through image simulation. On the basis of this comparison, one of the low energy structures predicted by theory can be ruled out.


2009 ◽  
Author(s):  
Kai Graf ◽  
Olaf Müller

This paper describes a method for the acquisition of the flying shape of spinnakers in a twisted flow wind tunnel. The method is based on photogrammetry. A set of digital cameras is used to obtain high resolution images of the spinnaker from different viewing angles. The images are post-processed using image-processing tools, pattern recognition methods and finally the photogrammetry algorithm. Results are shown comparing design versus flying shape of the spinnaker and the impact of wind velocity and wind twist on the flying shape. Finally some common rules for optimum spinnaker trimming are investigated and examined.


2017 ◽  
Vol 16 (6) ◽  
pp. 438-446 ◽  
Author(s):  
Michael F. Lohrer ◽  
Darrin M. Hanna ◽  
Yang Liu ◽  
Kang-Hsin Wang ◽  
Fu-Tong Liu ◽  
...  

2013 ◽  
Vol 4 (6) ◽  
pp. 975-981 ◽  
Author(s):  
Daniel Bahena ◽  
Nabraj Bhattarai ◽  
Ulises Santiago ◽  
Alfredo Tlahuice ◽  
Arturo Ponce ◽  
...  

Author(s):  
M. Rokhis Khomarudin ◽  
. Suwarsono ◽  
Dini Oktavia Ambarwati ◽  
Gunawan Prabowo

The flood hit Kampung Pulo region in almost every year. This disaster has caused the evacuation of some residents in weeks. Given the frequency of occurrence is quite high in the region it is necessary to do a study to support disaster risk reduction. This study aimed to evaluate the incidence of flooding that occurred in Kampung Pulo in terms of topography, river conditions, characteristics of the building, and socioeconomic conditions. Methods of study include geomorphology analysis, identification of areas of stagnant, the estimated number of people exposed, the estimation of socio-economic conditions of the population, as well as determining the location of an evacuation. The data used is high-resolution remote sensing imagery is QuickBird and SPOT-6. It also used the results of aerial photography using Unmanned Aerial Vehicle (UAV). Aerial photography was conducted on January 18, 2013, which is when the serious flooding that inundated almost the entire region of Kampung Pulo. Information risk level of buildings and population resulting from this study were obtained by using GIS. The results obtained from this study can be used to develop recommendations and strategies for flood mitigation in Kampung Pulo, Jakarta. One of them is the determination of the location for vertical evacuation plan in the affected areas.


Author(s):  
A. R. Yusoff ◽  
N. Darwin ◽  
Z. Majid ◽  
M. F. M. Ariff ◽  
K. M. Idris

<p><strong>Abstract.</strong> Unmanned Aerial Vehicle (UAV) is one of the geoinformation data acquisition technologies that popularly used for slope mapping. UAV is capable to produce high resolution imageries in a short period. In order to obtained suitable results in slope mapping, specific UAV mapping factors have to be followed and the selection of the optimum Ground Control Point (GCP) and the UAV flying altitude become the most important factors. This paper presents the production of high resolution slope map using UAV technology. The research involved with the following steps, (i) preparation of field work (i.e. determination of the number of GCPs and flying altitude) and the flight mission; (ii) processing and evaluating of UAV images, and (iii) production of slope map. The research was successfully conducted at Kulim, Kedah, Malaysia as the condition of slope in that area is prone to the landslide incidences. A micro rotary wing UAV system known as DJI Phantom 4 was used for collecting the high resolution images with various flying altitudes. Due to the un-accessibility of the slope area, all the GCPs are measured from the point cloud data that was acquired from the Pheonix AL-32 LiDAR system. The analysis shows that the coordinates (X, Y and Z) accuracy is influenced by the flying altitude. As the flying altitude increases, the coordinate’s accuracy also increased. Furthermore, the results also show that the coverage slope area and number of tie point increases when the flying altitude increases. This practical study contributed to the slope work activities where the specific requirements for flying altitudes have been clearly stated.</p>


1994 ◽  
Vol 144 ◽  
pp. 541-547
Author(s):  
J. Sýkora ◽  
J. Rybák ◽  
P. Ambrož

AbstractHigh resolution images, obtained during July 11, 1991 total solar eclipse, allowed us to estimate the degree of solar corona polarization in the light of FeXIV 530.3 nm emission line and in the white light, as well. Very preliminary analysis reveals remarkable differences in the degree of polarization for both sets of data, particularly as for level of polarization and its distribution around the Sun’s limb.


Author(s):  
Etienne de Harven

Biological ultrastructures have been extensively studied with the scanning electron microscope (SEM) for the past 12 years mainly because this instrument offers accurate and reproducible high resolution images of cell shapes, provided the cells are dried in ways which will spare them the damage which would be caused by air drying. This can be achieved by several techniques among which the critical point drying technique of T. Anderson has been, by far, the most reproducibly successful. Many biologists, however, have been interpreting SEM micrographs in terms of an exclusive secondary electron imaging (SEI) process in which the resolution is primarily limited by the spot size of the primary incident beam. in fact, this is not the case since it appears that high resolution, even on uncoated samples, is probably compromised by the emission of secondary electrons of much more complex origin.When an incident primary electron beam interacts with the surface of most biological samples, a large percentage of the electrons penetrate below the surface of the exposed cells.


Sign in / Sign up

Export Citation Format

Share Document