scholarly journals Protic Ionic Liquids Can Be Both Free Proton Conductors and Benign Superacids

Author(s):  
Younes Ansari ◽  
Kazuhide Ueno ◽  
C. Austen Angell
2011 ◽  
Vol 56 (22) ◽  
pp. 7503-7509 ◽  
Author(s):  
Jin Xiang ◽  
Renjie Chen ◽  
Feng Wu ◽  
Li Li ◽  
Shi Chen ◽  
...  

2020 ◽  
Author(s):  
younes ansari ◽  
kazuhide ueno ◽  
Austen Angell

<div>Superacids have been the source of much spectacular chemistry, but very little interesting physics despite the fact that the states of cations formed by transfer of the superacid proton to molecular bases, can approach that of the cations in free space. Indeed some of the very strongest acids, such as HPF6 and HAlCl4, have no independent existence due to lack of screening of the bare proton self-energy: their acidities can only be assessed by study of the conjugate bases. Here we show that, by allowing the protons of transient HAlCl4 and HAlBr4 to relocate on pentafluoropyridine, PFP - a very weak base that is stable to superacids - we can create glassforming protic ionic liquids (PILs) which are themselves superacids but, being free of superacid vapors, are of benign character. At Tg, conductivities exceed “good” ionic liquid values by 9 decades, so must be superprotonic. Anomalous Walden plots confirm superprotonicity.</div>


2020 ◽  
Author(s):  
younes ansari ◽  
kazuhide ueno ◽  
Austen Angell

<div>Superacids have been the source of much spectacular chemistry, but very little interesting physics despite the fact that the states of cations formed by transfer of the superacid proton to molecular bases, can approach that of the cations in free space. Indeed some of the very strongest acids, such as HPF6 and HAlCl4, have no independent existence due to lack of screening of the bare proton self-energy: their acidities can only be assessed by study of the conjugate bases. Here we show that, by allowing the protons of transient HAlCl4 and HAlBr4 to relocate on pentafluoropyridine, PFP - a very weak base that is stable to superacids - we can create glassforming protic ionic liquids (PILs) which are themselves superacids but, being free of superacid vapors, are of benign character. At Tg, conductivities exceed “good” ionic liquid values by 9 decades, so must be superprotonic. Anomalous Walden plots confirm superprotonicity.</div>


2021 ◽  
Vol 125 (5) ◽  
pp. 1416-1428
Author(s):  
Jing Ma ◽  
Yutong Wang ◽  
Xueqing Yang ◽  
Mingxuan Zhu ◽  
Baohe Wang

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4158
Author(s):  
Patrycja Glińska ◽  
Andrzej Wolan ◽  
Wojciech Kujawski ◽  
Edyta Rynkowska ◽  
Joanna Kujawa

There has been an ongoing need to develop polymer materials with increased performance as proton exchange membranes (PEMs) for middle- and high-temperature fuel cells. Poly(vinyl alcohol) (PVA) is a highly hydrophilic and chemically stable polymer bearing hydroxyl groups, which can be further altered. Protic ionic liquids (proticILs) have been found to be an effective modifying polymer agent used as a proton carrier providing PEMs’ desirable proton conductivity at high temperatures and under anhydrous conditions. In this study, the novel synthesis route of PVA grafted with fluorinated protic ionic liquids bearing sulfo groups (–SO3H) was elaborated. The polymer functionalization with fluorinated proticILs was achieved by the following approaches: (i) the PVA acylation and subsequent reaction with fluorinated sultones and (ii) free-radical polymerization reaction of vinyl acetate derivatives modified with 1-methylimidazole and sultones. These modifications resulted in the PVA being chemically modified with ionic liquids of protic character. The successfully grafted PVA has been characterized using 1H, 19F, and 13C-NMR and FTIR-ATR. The presented synthesis route is a novel approach to PVA functionalization with imidazole-based fluorinated ionic liquids with sulfo groups.


2021 ◽  
pp. 113036
Author(s):  
Emanuel A. Crespo ◽  
Liliana P. Silva ◽  
Cristina I.P. Correia ◽  
Mónia A.R. Martins ◽  
Ramesh L. Gardas ◽  
...  

2021 ◽  
Vol 23 (4) ◽  
pp. 2663-2675
Author(s):  
Viviane Overbeck ◽  
Henning Schröder ◽  
Anne-Marie Bonsa ◽  
Klaus Neymeyr ◽  
Ralf Ludwig

NMR Fast-Field-Cycling (FFC) relaxometry provides important information about translational and rotational dynamics of hydrogen bonded protic ionic liquids (PILs). 


2021 ◽  
Vol 511 ◽  
pp. 111756
Author(s):  
Cheng Li ◽  
Fei Liu ◽  
Tianxiang Zhao ◽  
Jiarui Gu ◽  
Peng Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document